| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/quic/quic_sent_packet_manager.h" |
| |
| #include "base/stl_util.h" |
| #include "net/quic/quic_flags.h" |
| #include "net/quic/test_tools/quic_config_peer.h" |
| #include "net/quic/test_tools/quic_sent_packet_manager_peer.h" |
| #include "net/quic/test_tools/quic_test_utils.h" |
| #include "testing/gmock/include/gmock/gmock.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using std::vector; |
| using testing::AnyNumber; |
| using testing::ElementsAre; |
| using testing::IsEmpty; |
| using testing::Pair; |
| using testing::Pointwise; |
| using testing::Return; |
| using testing::StrictMock; |
| using testing::_; |
| |
| namespace net { |
| namespace test { |
| namespace { |
| |
| // Default packet length. |
| const uint32 kDefaultLength = 1000; |
| |
| // Matcher to check the key of the key-value pair it receives as first argument |
| // equals its second argument. |
| MATCHER(KeyEq, "") { |
| return std::tr1::get<0>(arg).first == std::tr1::get<1>(arg); |
| } |
| |
| class MockDebugDelegate : public QuicSentPacketManager::DebugDelegate { |
| public: |
| MOCK_METHOD2(OnSpuriousPacketRetransmission, |
| void(TransmissionType transmission_type, |
| QuicByteCount byte_size)); |
| }; |
| |
| class QuicSentPacketManagerTest : public ::testing::TestWithParam<bool> { |
| protected: |
| QuicSentPacketManagerTest() |
| : manager_(true, &clock_, &stats_, kCubic, kNack, false), |
| send_algorithm_(new StrictMock<MockSendAlgorithm>), |
| network_change_visitor_(new StrictMock<MockNetworkChangeVisitor>) { |
| QuicSentPacketManagerPeer::SetSendAlgorithm(&manager_, send_algorithm_); |
| // Disable tail loss probes for most tests. |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 0); |
| // Advance the time 1s so the send times are never QuicTime::Zero. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1000)); |
| manager_.set_network_change_visitor(network_change_visitor_.get()); |
| |
| EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate()) |
| .Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) |
| .Times(AnyNumber()) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); |
| } |
| |
| ~QuicSentPacketManagerTest() override { STLDeleteElements(&packets_); } |
| |
| QuicByteCount BytesInFlight() { |
| return QuicSentPacketManagerPeer::GetBytesInFlight(&manager_); |
| } |
| void VerifyUnackedPackets(QuicPacketSequenceNumber* packets, |
| size_t num_packets) { |
| if (num_packets == 0) { |
| EXPECT_FALSE(manager_.HasUnackedPackets()); |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetNumRetransmittablePackets( |
| &manager_)); |
| return; |
| } |
| |
| EXPECT_TRUE(manager_.HasUnackedPackets()); |
| EXPECT_EQ(packets[0], manager_.GetLeastUnacked()); |
| for (size_t i = 0; i < num_packets; ++i) { |
| EXPECT_TRUE(manager_.IsUnacked(packets[i])) << packets[i]; |
| } |
| } |
| |
| void VerifyRetransmittablePackets(QuicPacketSequenceNumber* packets, |
| size_t num_packets) { |
| EXPECT_EQ(num_packets, |
| QuicSentPacketManagerPeer::GetNumRetransmittablePackets( |
| &manager_)); |
| for (size_t i = 0; i < num_packets; ++i) { |
| EXPECT_TRUE(manager_.HasRetransmittableFrames(packets[i])) |
| << " packets[" << i << "]:" << packets[i]; |
| } |
| } |
| |
| void ExpectAck(QuicPacketSequenceNumber largest_observed) { |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent( |
| true, _, ElementsAre(Pair(largest_observed, _)), IsEmpty())); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| } |
| |
| void ExpectUpdatedRtt(QuicPacketSequenceNumber largest_observed) { |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(true, _, IsEmpty(), IsEmpty())); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| } |
| |
| void ExpectAckAndLoss(bool rtt_updated, |
| QuicPacketSequenceNumber largest_observed, |
| QuicPacketSequenceNumber lost_packet) { |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent( |
| rtt_updated, _, ElementsAre(Pair(largest_observed, _)), |
| ElementsAre(Pair(lost_packet, _)))); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| } |
| |
| // |packets_acked| and |packets_lost| should be in sequence number order. |
| void ExpectAcksAndLosses(bool rtt_updated, |
| QuicPacketSequenceNumber* packets_acked, |
| size_t num_packets_acked, |
| QuicPacketSequenceNumber* packets_lost, |
| size_t num_packets_lost) { |
| vector<QuicPacketSequenceNumber> ack_vector; |
| for (size_t i = 0; i < num_packets_acked; ++i) { |
| ack_vector.push_back(packets_acked[i]); |
| } |
| vector<QuicPacketSequenceNumber> lost_vector; |
| for (size_t i = 0; i < num_packets_lost; ++i) { |
| lost_vector.push_back(packets_lost[i]); |
| } |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(rtt_updated, _, |
| Pointwise(KeyEq(), ack_vector), |
| Pointwise(KeyEq(), lost_vector))); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()). |
| Times(AnyNumber()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()).Times(AnyNumber()); |
| } |
| |
| void RetransmitAndSendPacket(QuicPacketSequenceNumber old_sequence_number, |
| QuicPacketSequenceNumber new_sequence_number) { |
| QuicSentPacketManagerPeer::MarkForRetransmission( |
| &manager_, old_sequence_number, TLP_RETRANSMISSION); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| QuicSentPacketManager::PendingRetransmission next_retransmission = |
| manager_.NextPendingRetransmission(); |
| EXPECT_EQ(old_sequence_number, next_retransmission.sequence_number); |
| EXPECT_EQ(TLP_RETRANSMISSION, |
| next_retransmission.transmission_type); |
| |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), new_sequence_number, |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)) |
| .WillOnce(Return(true)); |
| SerializedPacket packet(CreatePacket(new_sequence_number, false)); |
| manager_.OnPacketSent(&packet, |
| old_sequence_number, |
| clock_.Now(), |
| kDefaultLength, |
| TLP_RETRANSMISSION, |
| HAS_RETRANSMITTABLE_DATA); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::IsRetransmission( |
| &manager_, new_sequence_number)); |
| } |
| |
| SerializedPacket CreateDataPacket(QuicPacketSequenceNumber sequence_number) { |
| return CreatePacket(sequence_number, true); |
| } |
| |
| SerializedPacket CreatePacket(QuicPacketSequenceNumber sequence_number, |
| bool retransmittable) { |
| packets_.push_back(QuicPacket::NewDataPacket( |
| nullptr, kDefaultLength, false, PACKET_8BYTE_CONNECTION_ID, false, |
| PACKET_6BYTE_SEQUENCE_NUMBER)); |
| return SerializedPacket( |
| sequence_number, PACKET_6BYTE_SEQUENCE_NUMBER, packets_.back(), 0u, |
| retransmittable ? new RetransmittableFrames() : nullptr); |
| } |
| |
| SerializedPacket CreateFecPacket(QuicPacketSequenceNumber sequence_number) { |
| packets_.push_back(QuicPacket::NewFecPacket( |
| nullptr, kDefaultLength, false, PACKET_8BYTE_CONNECTION_ID, false, |
| PACKET_6BYTE_SEQUENCE_NUMBER)); |
| return SerializedPacket(sequence_number, PACKET_6BYTE_SEQUENCE_NUMBER, |
| packets_.back(), 0u, nullptr); |
| } |
| |
| void SendDataPacket(QuicPacketSequenceNumber sequence_number) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), sequence_number, _, _)) |
| .Times(1).WillOnce(Return(true)); |
| SerializedPacket packet(CreateDataPacket(sequence_number)); |
| manager_.OnPacketSent(&packet, 0, clock_.Now(), |
| packet.packet->length(), NOT_RETRANSMISSION, |
| HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| void SendCryptoPacket(QuicPacketSequenceNumber sequence_number) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), sequence_number, |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)) |
| .Times(1).WillOnce(Return(true)); |
| SerializedPacket packet(CreateDataPacket(sequence_number)); |
| packet.retransmittable_frames->AddStreamFrame( |
| new QuicStreamFrame(1, false, 0, IOVector())); |
| packet.retransmittable_frames->set_encryption_level(ENCRYPTION_NONE); |
| manager_.OnPacketSent(&packet, 0, clock_.Now(), |
| packet.packet->length(), NOT_RETRANSMISSION, |
| HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| void SendFecPacket(QuicPacketSequenceNumber sequence_number) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), sequence_number, |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)) |
| .Times(1).WillOnce(Return(true)); |
| SerializedPacket packet(CreateFecPacket(sequence_number)); |
| manager_.OnPacketSent(&packet, 0, clock_.Now(), |
| packet.packet->length(), NOT_RETRANSMISSION, |
| NO_RETRANSMITTABLE_DATA); |
| } |
| |
| void SendAckPacket(QuicPacketSequenceNumber sequence_number) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, BytesInFlight(), sequence_number, |
| kDefaultLength, NO_RETRANSMITTABLE_DATA)) |
| .Times(1).WillOnce(Return(false)); |
| SerializedPacket packet(CreatePacket(sequence_number, false)); |
| manager_.OnPacketSent(&packet, 0, clock_.Now(), |
| packet.packet->length(), NOT_RETRANSMISSION, |
| NO_RETRANSMITTABLE_DATA); |
| } |
| |
| // Based on QuicConnection's WritePendingRetransmissions. |
| void RetransmitNextPacket( |
| QuicPacketSequenceNumber retransmission_sequence_number) { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, retransmission_sequence_number, |
| kDefaultLength, HAS_RETRANSMITTABLE_DATA)) |
| .Times(1).WillOnce(Return(true)); |
| const QuicSentPacketManager::PendingRetransmission pending = |
| manager_.NextPendingRetransmission(); |
| SerializedPacket packet( |
| CreatePacket(retransmission_sequence_number, false)); |
| manager_.OnPacketSent(&packet, pending.sequence_number, clock_.Now(), |
| kDefaultLength, pending.transmission_type, |
| HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| QuicSentPacketManager manager_; |
| vector<QuicPacket*> packets_; |
| MockClock clock_; |
| QuicConnectionStats stats_; |
| MockSendAlgorithm* send_algorithm_; |
| scoped_ptr<MockNetworkChangeVisitor> network_change_visitor_; |
| }; |
| |
| TEST_F(QuicSentPacketManagerTest, IsUnacked) { |
| VerifyUnackedPackets(nullptr, 0); |
| SendDataPacket(1); |
| |
| QuicPacketSequenceNumber unacked[] = { 1 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| QuicPacketSequenceNumber retransmittable[] = { 1 }; |
| VerifyRetransmittablePackets(retransmittable, arraysize(retransmittable)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, IsUnAckedRetransmit) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| EXPECT_TRUE(QuicSentPacketManagerPeer::IsRetransmission(&manager_, 2)); |
| QuicPacketSequenceNumber unacked[] = { 1, 2 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| QuicPacketSequenceNumber retransmittable[] = { 2 }; |
| VerifyRetransmittablePackets(retransmittable, arraysize(retransmittable)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitThenAck) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| // Ack 2 but not 1. |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 2; |
| ack_frame.missing_packets.insert(1); |
| ExpectAck(2); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| // Packet 1 is unacked, pending, but not retransmittable. |
| QuicPacketSequenceNumber unacked[] = { 1 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitThenAckBeforeSend) { |
| SendDataPacket(1); |
| QuicSentPacketManagerPeer::MarkForRetransmission( |
| &manager_, 1, TLP_RETRANSMISSION); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| |
| // Ack 1. |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 1; |
| ExpectAck(1); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| // There should no longer be a pending retransmission. |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // No unacked packets remain. |
| VerifyUnackedPackets(nullptr, 0); |
| VerifyRetransmittablePackets(nullptr, 0); |
| EXPECT_EQ(0u, stats_.packets_spuriously_retransmitted); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitThenAckPrevious) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15); |
| clock_.AdvanceTime(rtt); |
| |
| // Ack 1 but not 2. |
| ExpectAck(1); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 1; |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| // 2 remains unacked, but no packets have retransmittable data. |
| QuicPacketSequenceNumber unacked[] = { 2 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| EXPECT_EQ(1u, stats_.packets_spuriously_retransmitted); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitThenAckPreviousThenNackRetransmit) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15); |
| clock_.AdvanceTime(rtt); |
| |
| // First, ACK packet 1 which makes packet 2 non-retransmittable. |
| ExpectAck(1); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 1; |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| SendDataPacket(3); |
| SendDataPacket(4); |
| SendDataPacket(5); |
| clock_.AdvanceTime(rtt); |
| |
| // Next, NACK packet 2 three times. |
| ack_frame.largest_observed = 3; |
| ack_frame.missing_packets.insert(2); |
| ExpectAck(3); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| ack_frame.largest_observed = 4; |
| ExpectAck(4); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| ack_frame.largest_observed = 5; |
| ExpectAckAndLoss(true, 5, 2); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| // No packets remain unacked. |
| VerifyUnackedPackets(nullptr, 0); |
| EXPECT_FALSE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Verify that the retransmission alarm would not fire, |
| // since there is no retransmittable data outstanding. |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| DISABLED_RetransmitTwiceThenAckPreviousBeforeSend) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| |
| // Fire the RTO, which will mark 2 for retransmission (but will not send it). |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| |
| // Ack 1 but not 2, before 2 is able to be sent. |
| // Since 1 has been retransmitted, it has already been lost, and so the |
| // send algorithm is not informed that it has been ACK'd. |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 1; |
| ExpectUpdatedRtt(1); |
| EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| // Since 2 was marked for retransmit, when 1 is acked, 2 is kept for RTT. |
| QuicPacketSequenceNumber unacked[] = { 2 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| EXPECT_FALSE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Verify that the retransmission alarm would not fire, |
| // since there is no retransmittable data outstanding. |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmitTwiceThenAckFirst) { |
| StrictMock<MockDebugDelegate> debug_delegate; |
| EXPECT_CALL(debug_delegate, OnSpuriousPacketRetransmission( |
| TLP_RETRANSMISSION, kDefaultLength)).Times(2); |
| manager_.set_debug_delegate(&debug_delegate); |
| |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| RetransmitAndSendPacket(2, 3); |
| QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(15); |
| clock_.AdvanceTime(rtt); |
| |
| // Ack 1 but not 2 or 3. |
| ExpectAck(1); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 1; |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| // 2 and 3 remain unacked, but no packets have retransmittable data. |
| QuicPacketSequenceNumber unacked[] = { 2, 3 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Ensure packet 2 is lost when 4 is sent and 3 and 4 are acked. |
| SendDataPacket(4); |
| ack_frame.largest_observed = 4; |
| ack_frame.missing_packets.insert(2); |
| QuicPacketSequenceNumber acked[] = { 3, 4 }; |
| ExpectAcksAndLosses(true, acked, arraysize(acked), nullptr, 0); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| QuicPacketSequenceNumber unacked2[] = { 2 }; |
| VerifyUnackedPackets(unacked2, arraysize(unacked2)); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| |
| SendDataPacket(5); |
| ack_frame.largest_observed = 5; |
| ExpectAckAndLoss(true, 5, 2); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| VerifyUnackedPackets(nullptr, 0); |
| EXPECT_FALSE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| EXPECT_EQ(2u, stats_.packets_spuriously_retransmitted); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, LoseButDontRetransmitRevivedPacket) { |
| SendDataPacket(1); |
| SendDataPacket(2); |
| SendFecPacket(3); |
| SendDataPacket(4); |
| |
| // Ack 2 and 3, and mark 1 as revived. |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 3; |
| ack_frame.missing_packets.insert(1); |
| ack_frame.revived_packets.insert(1); |
| QuicPacketSequenceNumber acked[] = { 2, 3 }; |
| ExpectAcksAndLosses(true, acked, arraysize(acked), nullptr, 0); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| QuicPacketSequenceNumber unacked[] = { 1, 4 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| QuicPacketSequenceNumber retransmittable[] = { 4 }; |
| VerifyRetransmittablePackets(retransmittable, arraysize(retransmittable)); |
| |
| // Ack the 4th packet and expect the 1st to be considered lost. |
| ack_frame.largest_observed = 4; |
| ExpectAckAndLoss(true, 4, 1); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, MarkLostThenReviveAndDontRetransmitPacket) { |
| SendDataPacket(1); |
| SendDataPacket(2); |
| SendDataPacket(3); |
| SendDataPacket(4); |
| SendFecPacket(5); |
| |
| // Ack 2, 3, and 4, and expect the 1st to be considered lost. |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 4; |
| ack_frame.missing_packets.insert(1); |
| QuicPacketSequenceNumber acked[] = { 2, 3, 4 }; |
| QuicPacketSequenceNumber lost[] = { 1 }; |
| ExpectAcksAndLosses(true, acked, arraysize(acked), lost, arraysize(lost)); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| QuicPacketSequenceNumber unacked[] = { 1, 5 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| QuicPacketSequenceNumber retransmittable[] = { 1 }; |
| VerifyRetransmittablePackets(retransmittable, arraysize(retransmittable)); |
| |
| // Ack 5th packet (FEC) and revive 1st packet. 1st packet should now be |
| // removed from pending retransmissions map. |
| ack_frame.largest_observed = 5; |
| ack_frame.revived_packets.insert(1); |
| ExpectAck(5); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| VerifyRetransmittablePackets(nullptr, 0); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, TruncatedAck) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| RetransmitAndSendPacket(2, 3); |
| RetransmitAndSendPacket(3, 4); |
| RetransmitAndSendPacket(4, 5); |
| |
| // Truncated ack with 4 NACKs, so the first packet is lost. |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 4; |
| ack_frame.missing_packets.insert(1); |
| ack_frame.missing_packets.insert(2); |
| ack_frame.missing_packets.insert(3); |
| ack_frame.missing_packets.insert(4); |
| ack_frame.is_truncated = true; |
| |
| QuicPacketSequenceNumber lost[] = { 1 }; |
| ExpectAcksAndLosses(true, nullptr, 0, lost, arraysize(lost)); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| // High water mark will be raised. |
| QuicPacketSequenceNumber unacked[] = { 2, 3, 4, 5 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| QuicPacketSequenceNumber retransmittable[] = { 5 }; |
| VerifyRetransmittablePackets(retransmittable, arraysize(retransmittable)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, AckPreviousTransmissionThenTruncatedAck) { |
| SendDataPacket(1); |
| RetransmitAndSendPacket(1, 2); |
| RetransmitAndSendPacket(2, 3); |
| RetransmitAndSendPacket(3, 4); |
| SendDataPacket(5); |
| SendDataPacket(6); |
| SendDataPacket(7); |
| SendDataPacket(8); |
| SendDataPacket(9); |
| |
| // Ack previous transmission |
| { |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 2; |
| ack_frame.missing_packets.insert(1); |
| ExpectAck(2); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| EXPECT_TRUE(manager_.IsUnacked(4)); |
| } |
| |
| // Truncated ack with 4 NACKs |
| { |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 6; |
| ack_frame.missing_packets.insert(3); |
| ack_frame.missing_packets.insert(4); |
| ack_frame.missing_packets.insert(5); |
| ack_frame.missing_packets.insert(6); |
| ack_frame.is_truncated = true; |
| ExpectAckAndLoss(true, 1, 3); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| } |
| |
| // High water mark will be raised. |
| QuicPacketSequenceNumber unacked[] = { 4, 5, 6, 7, 8, 9 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| QuicPacketSequenceNumber retransmittable[] = { 5, 6, 7, 8, 9 }; |
| VerifyRetransmittablePackets(retransmittable, arraysize(retransmittable)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetLeastUnacked) { |
| EXPECT_EQ(1u, manager_.GetLeastUnacked()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetLeastUnackedUnacked) { |
| SendDataPacket(1); |
| EXPECT_EQ(1u, manager_.GetLeastUnacked()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetLeastUnackedUnackedFec) { |
| SendFecPacket(1); |
| EXPECT_EQ(1u, manager_.GetLeastUnacked()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetLeastUnackedAndDiscard) { |
| VerifyUnackedPackets(nullptr, 0); |
| |
| SendFecPacket(1); |
| EXPECT_EQ(1u, manager_.GetLeastUnacked()); |
| |
| SendFecPacket(2); |
| EXPECT_EQ(1u, manager_.GetLeastUnacked()); |
| |
| SendFecPacket(3); |
| EXPECT_EQ(1u, manager_.GetLeastUnacked()); |
| |
| QuicPacketSequenceNumber unacked[] = { 1, 2, 3 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| // Ack 2, so there's an rtt update. |
| ExpectAck(2); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 2; |
| ack_frame.missing_packets.insert(1); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| EXPECT_EQ(1u, manager_.GetLeastUnacked()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetSentTime) { |
| VerifyUnackedPackets(nullptr, 0); |
| |
| QuicTime sent_time = clock_.Now(); |
| SendFecPacket(1); |
| QuicTime sent_time2 = clock_.Now(); |
| SendFecPacket(2); |
| QuicPacketSequenceNumber unacked[] = { 1, 2 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| |
| EXPECT_TRUE(manager_.HasUnackedPackets()); |
| EXPECT_EQ(sent_time, QuicSentPacketManagerPeer::GetSentTime(&manager_, 1)); |
| EXPECT_EQ(sent_time2, QuicSentPacketManagerPeer::GetSentTime(&manager_, 2)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, AckAckAndUpdateRtt) { |
| SendDataPacket(1); |
| SendAckPacket(2); |
| |
| // Now ack the ack and expect an RTT update. |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 2; |
| ack_frame.delta_time_largest_observed = |
| QuicTime::Delta::FromMilliseconds(5); |
| |
| ExpectAck(1); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| SendAckPacket(3); |
| |
| // Now ack the ack and expect only an RTT update. |
| ack_frame.largest_observed = 3; |
| ExpectUpdatedRtt(3); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, Rtt) { |
| QuicPacketSequenceNumber sequence_number = 1; |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(15); |
| SendDataPacket(sequence_number); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(20)); |
| |
| ExpectAck(sequence_number); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = sequence_number; |
| ack_frame.delta_time_largest_observed = |
| QuicTime::Delta::FromMilliseconds(5); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| EXPECT_EQ(expected_rtt, |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->latest_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RttWithInvalidDelta) { |
| // Expect that the RTT is equal to the local time elapsed, since the |
| // delta_time_largest_observed is larger than the local time elapsed |
| // and is hence invalid. |
| QuicPacketSequenceNumber sequence_number = 1; |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10); |
| SendDataPacket(sequence_number); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(sequence_number); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = sequence_number; |
| ack_frame.delta_time_largest_observed = |
| QuicTime::Delta::FromMilliseconds(11); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| EXPECT_EQ(expected_rtt, |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->latest_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RttWithInfiniteDelta) { |
| // Expect that the RTT is equal to the local time elapsed, since the |
| // delta_time_largest_observed is infinite, and is hence invalid. |
| QuicPacketSequenceNumber sequence_number = 1; |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10); |
| SendDataPacket(sequence_number); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(sequence_number); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = sequence_number; |
| ack_frame.delta_time_largest_observed = QuicTime::Delta::Infinite(); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| EXPECT_EQ(expected_rtt, |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->latest_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RttZeroDelta) { |
| // Expect that the RTT is the time between send and receive since the |
| // delta_time_largest_observed is zero. |
| QuicPacketSequenceNumber sequence_number = 1; |
| QuicTime::Delta expected_rtt = QuicTime::Delta::FromMilliseconds(10); |
| SendDataPacket(sequence_number); |
| clock_.AdvanceTime(expected_rtt); |
| |
| ExpectAck(sequence_number); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = sequence_number; |
| ack_frame.delta_time_largest_observed = QuicTime::Delta::Zero(); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| EXPECT_EQ(expected_rtt, |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->latest_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, TailLossProbeTimeout) { |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2); |
| |
| // Send 1 packet. |
| QuicPacketSequenceNumber sequence_number = 1; |
| SendDataPacket(sequence_number); |
| |
| // The first tail loss probe retransmits 1 packet. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| manager_.MaybeRetransmitTailLossProbe(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(2); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // The second tail loss probe retransmits 1 packet. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| manager_.MaybeRetransmitTailLossProbe(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(3); |
| EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Infinite())); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // Ack the third and ensure the first two are still pending. |
| ExpectAck(3); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 3; |
| ack_frame.missing_packets.insert(1); |
| ack_frame.missing_packets.insert(2); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| |
| // Acking two more packets will lose both of them due to nacks. |
| ack_frame.largest_observed = 5; |
| QuicPacketSequenceNumber lost[] = { 1, 2 }; |
| ExpectAcksAndLosses(false, nullptr, 0, lost, arraysize(lost)); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_FALSE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| EXPECT_EQ(2u, stats_.tlp_count); |
| EXPECT_EQ(0u, stats_.rto_count); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, TailLossProbeThenRTO) { |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2); |
| |
| // Send 100 packets. |
| const size_t kNumSentPackets = 100; |
| for (size_t i = 1; i <= kNumSentPackets; ++i) { |
| SendDataPacket(i); |
| } |
| QuicTime rto_packet_time = clock_.Now(); |
| // Advance the time. |
| clock_.AdvanceTime(manager_.GetRetransmissionTime().Subtract(clock_.Now())); |
| |
| // The first tail loss probe retransmits 1 packet. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| manager_.MaybeRetransmitTailLossProbe(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(101); |
| EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Infinite())); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| clock_.AdvanceTime(manager_.GetRetransmissionTime().Subtract(clock_.Now())); |
| |
| // The second tail loss probe retransmits 1 packet. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe()); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(102); |
| EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Infinite())); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| |
| // Ensure the RTO is set based on the correct packet. |
| if (FLAGS_quic_rto_uses_last_sent) { |
| rto_packet_time = clock_.Now(); |
| } |
| EXPECT_CALL(*send_algorithm_, RetransmissionDelay()) |
| .WillOnce(Return(QuicTime::Delta::FromSeconds(1))); |
| EXPECT_EQ(rto_packet_time.Add(QuicTime::Delta::FromSeconds(1)), |
| manager_.GetRetransmissionTime()); |
| |
| // Advance the time enough to ensure all packets are RTO'd. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1000)); |
| |
| if (!FLAGS_quic_use_new_rto) { |
| // The final RTO abandons all of them. |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| } |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(2u, stats_.tlp_count); |
| EXPECT_EQ(1u, stats_.rto_count); |
| |
| // Send and Ack the RTO and ensure OnRetransmissionTimeout is called. |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_EQ(102 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| |
| RetransmitNextPacket(103); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 103; |
| for (int i = 0; i < 103; ++i) { |
| ack_frame.missing_packets.insert(i); |
| } |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(true, _, ElementsAre(Pair(103, _)), _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| // All packets before 103 should be lost. |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, CryptoHandshakeTimeout) { |
| // Send 2 crypto packets and 3 data packets. |
| const size_t kNumSentCryptoPackets = 2; |
| for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) { |
| SendCryptoPacket(i); |
| } |
| const size_t kNumSentDataPackets = 3; |
| for (size_t i = 1; i <= kNumSentDataPackets; ++i) { |
| SendDataPacket(kNumSentCryptoPackets + i); |
| } |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| |
| // The first retransmits 2 packets. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| RetransmitNextPacket(6); |
| RetransmitNextPacket(7); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| |
| // The second retransmits 2 packets. |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| RetransmitNextPacket(8); |
| RetransmitNextPacket(9); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| |
| // Now ack the two crypto packets and the speculatively encrypted request, |
| // and ensure the first four crypto packets get abandoned, but not lost. |
| QuicPacketSequenceNumber acked[] = { 3, 4, 5, 8, 9 }; |
| ExpectAcksAndLosses(true, acked, arraysize(acked), nullptr, 0); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 9; |
| ack_frame.missing_packets.insert(1); |
| ack_frame.missing_packets.insert(2); |
| ack_frame.missing_packets.insert(6); |
| ack_frame.missing_packets.insert(7); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| EXPECT_FALSE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, CryptoHandshakeTimeoutVersionNegotiation) { |
| // Send 2 crypto packets and 3 data packets. |
| const size_t kNumSentCryptoPackets = 2; |
| for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) { |
| SendCryptoPacket(i); |
| } |
| const size_t kNumSentDataPackets = 3; |
| for (size_t i = 1; i <= kNumSentDataPackets; ++i) { |
| SendDataPacket(kNumSentCryptoPackets + i); |
| } |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| |
| // The first retransmission timeout retransmits 2 crypto packets. |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(6); |
| RetransmitNextPacket(7); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| |
| // Now act like a version negotiation packet arrived, which would cause all |
| // unacked packets to be retransmitted. |
| manager_.RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION); |
| |
| // Ensure the first two pending packets are the crypto retransmits. |
| ASSERT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_EQ(6u, manager_.NextPendingRetransmission().sequence_number); |
| RetransmitNextPacket(8); |
| EXPECT_EQ(7u, manager_.NextPendingRetransmission().sequence_number); |
| RetransmitNextPacket(9); |
| |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| // Send 3 more data packets and ensure the least unacked is raised. |
| RetransmitNextPacket(10); |
| RetransmitNextPacket(11); |
| RetransmitNextPacket(12); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| EXPECT_EQ(8u, manager_.GetLeastUnacked()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, CryptoHandshakeSpuriousRetransmission) { |
| // Send 1 crypto packet. |
| SendCryptoPacket(1); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| |
| // Retransmit the crypto packet as 2. |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(2); |
| |
| // Retransmit the crypto packet as 3. |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(3); |
| |
| // Now ack the second crypto packet, and ensure the first gets removed, but |
| // the third does not. |
| ExpectUpdatedRtt(2); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 2; |
| ack_frame.missing_packets.insert(1); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| |
| EXPECT_FALSE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| QuicPacketSequenceNumber unacked[] = { 3 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, CryptoHandshakeTimeoutUnsentDataPacket) { |
| // Send 2 crypto packets and 1 data packet. |
| const size_t kNumSentCryptoPackets = 2; |
| for (size_t i = 1; i <= kNumSentCryptoPackets; ++i) { |
| SendCryptoPacket(i); |
| } |
| SendDataPacket(3); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| |
| // Retransmit 2 crypto packets, but not the serialized packet. |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(4); |
| RetransmitNextPacket(5); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| CryptoHandshakeRetransmissionThenRetransmitAll) { |
| // Send 1 crypto packet. |
| SendCryptoPacket(1); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| |
| // Retransmit the crypto packet as 2. |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(2); |
| |
| // Now retransmit all the unacked packets, which occurs when there is a |
| // version negotiation. |
| manager_.RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION); |
| QuicPacketSequenceNumber unacked[] = { 1, 2 }; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| EXPECT_FALSE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, |
| CryptoHandshakeRetransmissionThenNeuterAndAck) { |
| // Send 1 crypto packet. |
| SendCryptoPacket(1); |
| EXPECT_TRUE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| |
| // Retransmit the crypto packet as 2. |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(2); |
| |
| // Retransmit the crypto packet as 3. |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(3); |
| |
| // Now neuter all unacked unencrypted packets, which occurs when the |
| // connection goes forward secure. |
| manager_.NeuterUnencryptedPackets(); |
| QuicPacketSequenceNumber unacked[] = { 1, 2, 3}; |
| VerifyUnackedPackets(unacked, arraysize(unacked)); |
| VerifyRetransmittablePackets(nullptr, 0); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_FALSE(QuicSentPacketManagerPeer::HasUnackedCryptoPackets(&manager_)); |
| EXPECT_FALSE(QuicSentPacketManagerPeer::HasPendingPackets(&manager_)); |
| |
| // Ensure both packets get discarded when packet 2 is acked. |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 3; |
| ack_frame.missing_packets.insert(1); |
| ack_frame.missing_packets.insert(2); |
| ExpectUpdatedRtt(3); |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| VerifyUnackedPackets(nullptr, 0); |
| VerifyRetransmittablePackets(nullptr, 0); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ResetRecentMinRTTWithEmptyWindow) { |
| QuicTime::Delta min_rtt = QuicTime::Delta::FromMilliseconds(50); |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->UpdateRtt( |
| min_rtt, QuicTime::Delta::Zero(), QuicTime::Zero()); |
| EXPECT_EQ(min_rtt, |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->min_rtt()); |
| EXPECT_EQ(min_rtt, |
| QuicSentPacketManagerPeer::GetRttStats( |
| &manager_)->recent_min_rtt()); |
| |
| // Send two packets with no prior bytes in flight. |
| SendDataPacket(1); |
| SendDataPacket(2); |
| |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100)); |
| // Ack two packets with 100ms RTT observations. |
| QuicAckFrame ack_frame; |
| ack_frame.delta_time_largest_observed = QuicTime::Delta::Zero(); |
| ack_frame.largest_observed = 1; |
| ExpectAck(1); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| // First ack does not change recent min rtt. |
| EXPECT_EQ(min_rtt, |
| QuicSentPacketManagerPeer::GetRttStats( |
| &manager_)->recent_min_rtt()); |
| |
| ack_frame.largest_observed = 2; |
| ExpectAck(2); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| EXPECT_EQ(min_rtt, |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->min_rtt()); |
| EXPECT_EQ(QuicTime::Delta::FromMilliseconds(100), |
| QuicSentPacketManagerPeer::GetRttStats( |
| &manager_)->recent_min_rtt()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, RetransmissionTimeout) { |
| // Send 100 packets. |
| const size_t kNumSentPackets = 100; |
| for (size_t i = 1; i <= kNumSentPackets; ++i) { |
| SendDataPacket(i); |
| } |
| |
| if (!FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| } |
| EXPECT_FALSE(manager_.MaybeRetransmitTailLossProbe()); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_EQ(100 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } else { |
| // Ensure all are abandoned when the RTO fires. |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| RetransmitNextPacket(101); |
| RetransmitNextPacket(102); |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } else { |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| } |
| |
| // Ack a retransmission. |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| } |
| QuicAckFrame ack_frame; |
| ack_frame.delta_time_largest_observed = QuicTime::Delta::Zero(); |
| ack_frame.largest_observed = 102; |
| for (int i = 0; i < 102; ++i) { |
| ack_frame.missing_packets.insert(i); |
| } |
| EXPECT_CALL(*send_algorithm_, |
| OnCongestionEvent(true, _, ElementsAre(Pair(102, _)), _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, TwoRetransmissionTimeoutsAckSecond) { |
| // Send 1 packet. |
| SendDataPacket(1); |
| |
| if (!FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| } |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_EQ(kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } else { |
| // Ensure all are abandoned when the RTO fires. |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| RetransmitNextPacket(2); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // Rto a second time. |
| if (!FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| } |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_EQ(2 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } else { |
| // Ensure all are abandoned when the RTO fires. |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| RetransmitNextPacket(3); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // Ack a retransmission and ensure OnRetransmissionTimeout is called. |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| } |
| QuicAckFrame ack_frame; |
| ack_frame.delta_time_largest_observed = QuicTime::Delta::Zero(); |
| ack_frame.largest_observed = 2; |
| ack_frame.missing_packets.insert(1); |
| if (FLAGS_quic_use_new_rto) { |
| ExpectAck(2); |
| } else { |
| ExpectUpdatedRtt(2); |
| } |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| if (FLAGS_quic_use_new_rto) { |
| // The original packet and newest should be outstanding. |
| EXPECT_EQ(2 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } else { |
| EXPECT_EQ(kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, TwoRetransmissionTimeoutsAckFirst) { |
| // Send 1 packet. |
| SendDataPacket(1); |
| |
| if (!FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| } |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_EQ(kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } else { |
| // Ensure all are abandoned when the RTO fires. |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| RetransmitNextPacket(2); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // Rto a second time. |
| if (!FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| } |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_EQ(2 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } else { |
| // Ensure all are abandoned when the RTO fires. |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| RetransmitNextPacket(3); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| // Ack a retransmission and ensure OnRetransmissionTimeout is called. |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| } |
| QuicAckFrame ack_frame; |
| ack_frame.delta_time_largest_observed = QuicTime::Delta::Zero(); |
| ack_frame.largest_observed = 3; |
| ack_frame.missing_packets.insert(1); |
| ack_frame.missing_packets.insert(2); |
| ExpectAck(3); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| if (FLAGS_quic_use_new_rto) { |
| // The first two packets should still be outstanding. |
| EXPECT_EQ(2 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } else { |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetTransmissionTime) { |
| EXPECT_EQ(QuicTime::Zero(), manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetTransmissionTimeCryptoHandshake) { |
| SendCryptoPacket(1); |
| |
| // Check the min. |
| RttStats* rtt_stats = QuicSentPacketManagerPeer::GetRttStats(&manager_); |
| rtt_stats->set_initial_rtt_us(1 * kNumMicrosPerMilli); |
| EXPECT_EQ(clock_.Now().Add(QuicTime::Delta::FromMilliseconds(10)), |
| manager_.GetRetransmissionTime()); |
| |
| // Test with a standard smoothed RTT. |
| rtt_stats->set_initial_rtt_us(100 * kNumMicrosPerMilli); |
| |
| QuicTime::Delta srtt = |
| QuicTime::Delta::FromMicroseconds(rtt_stats->initial_rtt_us()); |
| QuicTime expected_time = clock_.Now().Add(srtt.Multiply(1.5)); |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(srtt.Multiply(1.5)); |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(2); |
| |
| // The retransmission time should now be twice as far in the future. |
| expected_time = clock_.Now().Add(srtt.Multiply(2).Multiply(1.5)); |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetTransmissionTimeTailLossProbe) { |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes(&manager_, 2); |
| SendDataPacket(1); |
| SendDataPacket(2); |
| |
| // Check the min. |
| RttStats* rtt_stats = QuicSentPacketManagerPeer::GetRttStats(&manager_); |
| rtt_stats->set_initial_rtt_us(1 * kNumMicrosPerMilli); |
| EXPECT_EQ(clock_.Now().Add(QuicTime::Delta::FromMilliseconds(10)), |
| manager_.GetRetransmissionTime()); |
| |
| // Test with a standard smoothed RTT. |
| rtt_stats->set_initial_rtt_us(100 * kNumMicrosPerMilli); |
| QuicTime::Delta srtt = |
| QuicTime::Delta::FromMicroseconds(rtt_stats->initial_rtt_us()); |
| QuicTime::Delta expected_tlp_delay = srtt.Multiply(2); |
| QuicTime expected_time = clock_.Now().Add(expected_tlp_delay); |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| clock_.AdvanceTime(expected_tlp_delay); |
| manager_.OnRetransmissionTimeout(); |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| EXPECT_TRUE(manager_.MaybeRetransmitTailLossProbe()); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| RetransmitNextPacket(3); |
| EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Infinite())); |
| EXPECT_EQ(QuicTime::Delta::Infinite(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| |
| expected_time = clock_.Now().Add(expected_tlp_delay); |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetTransmissionTimeSpuriousRTO) { |
| QuicSentPacketManagerPeer::GetRttStats(&manager_)->UpdateRtt( |
| QuicTime::Delta::FromMilliseconds(100), |
| QuicTime::Delta::Zero(), |
| QuicTime::Zero()); |
| |
| SendDataPacket(1); |
| SendDataPacket(2); |
| SendDataPacket(3); |
| SendDataPacket(4); |
| |
| QuicTime::Delta expected_rto_delay = QuicTime::Delta::FromMilliseconds(500); |
| EXPECT_CALL(*send_algorithm_, RetransmissionDelay()) |
| .WillRepeatedly(Return(expected_rto_delay)); |
| QuicTime expected_time = clock_.Now().Add(expected_rto_delay); |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| |
| // Retransmit the packet by invoking the retransmission timeout. |
| if (!FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| } |
| clock_.AdvanceTime(expected_rto_delay); |
| manager_.OnRetransmissionTimeout(); |
| if (FLAGS_quic_use_new_rto) { |
| // All packets are still considered inflight. |
| EXPECT_EQ(4 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } else { |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| RetransmitNextPacket(5); |
| RetransmitNextPacket(6); |
| if (FLAGS_quic_use_new_rto) { |
| // All previous packets are inflight, plus two rto retransmissions. |
| EXPECT_EQ(6 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| } else { |
| EXPECT_EQ(2 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| EXPECT_TRUE(manager_.HasPendingRetransmissions()); |
| } |
| |
| // The delay should double the second time. |
| expected_time = clock_.Now().Add(expected_rto_delay).Add(expected_rto_delay); |
| // Once we always base the timer on the right edge, leaving the older packets |
| // in flight doesn't change the timeout. |
| if (!FLAGS_quic_use_new_rto || FLAGS_quic_rto_uses_last_sent) { |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| |
| // Ack a packet before the first RTO and ensure the RTO timeout returns to the |
| // original value and OnRetransmissionTimeout is not called or reverted. |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 2; |
| ack_frame.missing_packets.insert(1); |
| if (FLAGS_quic_use_new_rto) { |
| ExpectAck(2); |
| } else { |
| ExpectUpdatedRtt(2); |
| EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); |
| } |
| manager_.OnIncomingAck(ack_frame, clock_.ApproximateNow()); |
| EXPECT_FALSE(manager_.HasPendingRetransmissions()); |
| if (FLAGS_quic_use_new_rto) { |
| EXPECT_EQ(5 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } else { |
| EXPECT_EQ(4 * kDefaultLength, |
| QuicSentPacketManagerPeer::GetBytesInFlight(&manager_)); |
| } |
| |
| // Wait 2RTTs from now for the RTO, since it's the max of the RTO time |
| // and the TLP time. In production, there would always be two TLP's first. |
| // Since retransmission was spurious, smoothed_rtt_ is expired, and replaced |
| // by the latest RTT sample of 500ms. |
| expected_time = clock_.Now().Add(QuicTime::Delta::FromMilliseconds(1000)); |
| // Once we always base the timer on the right edge, leaving the older packets |
| // in flight doesn't change the timeout. |
| if (!FLAGS_quic_use_new_rto || FLAGS_quic_rto_uses_last_sent) { |
| EXPECT_EQ(expected_time, manager_.GetRetransmissionTime()); |
| } |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetTransmissionDelayMin) { |
| SendDataPacket(1); |
| EXPECT_CALL(*send_algorithm_, RetransmissionDelay()) |
| .WillRepeatedly(Return(QuicTime::Delta::FromMilliseconds(1))); |
| QuicTime::Delta delay = QuicTime::Delta::FromMilliseconds(200); |
| |
| // If the delay is smaller than the min, ensure it exponentially backs off |
| // from the min. |
| for (int i = 0; i < 5; ++i) { |
| EXPECT_EQ(delay, |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| delay = delay.Add(delay); |
| if (!FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| } |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(i + 2); |
| } |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetTransmissionDelayMax) { |
| EXPECT_CALL(*send_algorithm_, RetransmissionDelay()) |
| .WillOnce(Return(QuicTime::Delta::FromSeconds(500))); |
| |
| EXPECT_EQ(QuicTime::Delta::FromSeconds(60), |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetTransmissionDelay) { |
| SendDataPacket(1); |
| QuicTime::Delta delay = QuicTime::Delta::FromMilliseconds(500); |
| EXPECT_CALL(*send_algorithm_, RetransmissionDelay()) |
| .WillRepeatedly(Return(delay)); |
| |
| // Delay should back off exponentially. |
| for (int i = 0; i < 5; ++i) { |
| EXPECT_EQ(delay, |
| QuicSentPacketManagerPeer::GetRetransmissionDelay(&manager_)); |
| delay = delay.Add(delay); |
| if (!FLAGS_quic_use_new_rto) { |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| } |
| manager_.OnRetransmissionTimeout(); |
| RetransmitNextPacket(i + 2); |
| } |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, GetLossDelay) { |
| MockLossAlgorithm* loss_algorithm = new MockLossAlgorithm(); |
| QuicSentPacketManagerPeer::SetLossAlgorithm(&manager_, loss_algorithm); |
| |
| EXPECT_CALL(*loss_algorithm, GetLossTimeout()) |
| .WillRepeatedly(Return(QuicTime::Zero())); |
| SendDataPacket(1); |
| SendDataPacket(2); |
| |
| // Handle an ack which causes the loss algorithm to be evaluated and |
| // set the loss timeout. |
| ExpectAck(2); |
| EXPECT_CALL(*loss_algorithm, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(SequenceNumberSet())); |
| QuicAckFrame ack_frame; |
| ack_frame.largest_observed = 2; |
| ack_frame.missing_packets.insert(1); |
| manager_.OnIncomingAck(ack_frame, clock_.Now()); |
| |
| QuicTime timeout(clock_.Now().Add(QuicTime::Delta::FromMilliseconds(10))); |
| EXPECT_CALL(*loss_algorithm, GetLossTimeout()) |
| .WillRepeatedly(Return(timeout)); |
| EXPECT_EQ(timeout, manager_.GetRetransmissionTime()); |
| |
| // Fire the retransmission timeout and ensure the loss detection algorithm |
| // is invoked. |
| EXPECT_CALL(*loss_algorithm, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(SequenceNumberSet())); |
| manager_.OnRetransmissionTimeout(); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateTimeLossDetectionFromOptions) { |
| EXPECT_EQ(kNack, |
| QuicSentPacketManagerPeer::GetLossAlgorithm( |
| &manager_)->GetLossDetectionType()); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kTIME); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(kTime, |
| QuicSentPacketManagerPeer::GetLossAlgorithm( |
| &manager_)->GetLossDetectionType()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateCongestionControlFromOptions) { |
| ValueRestore<bool> old_flag(&FLAGS_quic_allow_bbr, true); |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kRENO); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kReno, QuicSentPacketManagerPeer::GetSendAlgorithm( |
| manager_)->GetCongestionControlType()); |
| |
| // TODO(rtenneti): Enable the following code after BBR code is checked in. |
| #if 0 |
| options.clear(); |
| options.push_back(kTBBR); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(kBBR, QuicSentPacketManagerPeer::GetSendAlgorithm( |
| manager_)->GetCongestionControlType()); |
| #endif |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateNumConnectionsFromOptions) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(k1CON); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| EXPECT_CALL(*send_algorithm_, SetNumEmulatedConnections(1)); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| manager_.SetFromConfig(config); |
| |
| QuicSentPacketManagerPeer::SetIsServer(&manager_, false); |
| QuicConfig client_config; |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| EXPECT_CALL(*send_algorithm_, SetNumEmulatedConnections(1)); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| manager_.SetFromConfig(client_config); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateNConnectionFromOptions) { |
| // By default, changing the number of open streams does nothing. |
| manager_.SetNumOpenStreams(5); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kNCON); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_CALL(*send_algorithm_, SetNumEmulatedConnections(5)); |
| manager_.SetNumOpenStreams(5); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateNoTLPFromOptionsAtServer) { |
| QuicConfig config; |
| QuicTagVector options; |
| |
| options.push_back(kNTLP); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| manager_.SetFromConfig(config); |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateNoTLPFromOptionsAtClient) { |
| QuicConfig client_config; |
| QuicTagVector options; |
| |
| options.push_back(kNTLP); |
| QuicSentPacketManagerPeer::SetIsServer(&manager_, false); |
| client_config.SetConnectionOptionsToSend(options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| manager_.SetFromConfig(client_config); |
| EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetMaxTailLossProbes(&manager_)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiatePacingFromOptions) { |
| EXPECT_FALSE(manager_.using_pacing()); |
| |
| QuicConfig config; |
| QuicTagVector options; |
| options.push_back(kPACE); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, /*using_pacing=*/true)); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_TRUE(manager_.using_pacing()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, EnablePacingViaFlag) { |
| EXPECT_FALSE(manager_.using_pacing()); |
| |
| // If pacing is enabled via command-line flag, it will be turned on, |
| // regardless of the contents of the config. |
| ValueRestore<bool> old_flag(&FLAGS_quic_enable_pacing, true); |
| QuicConfig config; |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, /*using_pacing=*/true)); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_TRUE(manager_.using_pacing()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, NegotiateReceiveWindowFromOptions) { |
| EXPECT_EQ(kDefaultSocketReceiveBuffer, |
| QuicSentPacketManagerPeer::GetReceiveWindow(&manager_)); |
| |
| // Try to set a size below the minimum and ensure it gets set to the min. |
| QuicConfig client_config; |
| QuicConfigPeer::SetReceivedSocketReceiveBuffer(&client_config, 1024); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| manager_.SetFromConfig(client_config); |
| |
| EXPECT_EQ(kMinSocketReceiveBuffer, |
| QuicSentPacketManagerPeer::GetReceiveWindow(&manager_)); |
| |
| // Ensure the smaller send window only allows 16 packets to be sent. |
| for (QuicPacketSequenceNumber i = 1; i <= 16; ++i) { |
| EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Zero())); |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, BytesInFlight(), i, |
| 1024, HAS_RETRANSMITTABLE_DATA)) |
| .WillOnce(Return(true)); |
| SerializedPacket packet(CreatePacket(i, true)); |
| manager_.OnPacketSent(&packet, 0, clock_.Now(), 1024, |
| NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA); |
| } |
| EXPECT_EQ(QuicTime::Delta::Infinite(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ReceiveWindowLimited) { |
| EXPECT_EQ(kDefaultSocketReceiveBuffer, |
| QuicSentPacketManagerPeer::GetReceiveWindow(&manager_)); |
| |
| // Ensure the smaller send window only allows 256 * 0.95 packets to be sent. |
| for (QuicPacketSequenceNumber i = 1; i <= 244; ++i) { |
| EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Zero())); |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, BytesInFlight(), i, |
| 1024, HAS_RETRANSMITTABLE_DATA)) |
| .WillOnce(Return(true)); |
| SerializedPacket packet(CreatePacket(i, true)); |
| manager_.OnPacketSent(&packet, 0, clock_.Now(), 1024, |
| NOT_RETRANSMISSION, HAS_RETRANSMITTABLE_DATA); |
| } |
| EXPECT_EQ(QuicTime::Delta::Infinite(), |
| manager_.TimeUntilSend(clock_.Now(), HAS_RETRANSMITTABLE_DATA)); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, UseInitialRoundTripTimeToSend) { |
| uint32 initial_rtt_us = 325000; |
| EXPECT_NE(initial_rtt_us, |
| manager_.GetRttStats()->smoothed_rtt().ToMicroseconds()); |
| |
| QuicConfig config; |
| config.SetInitialRoundTripTimeUsToSend(initial_rtt_us); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| EXPECT_CALL(*network_change_visitor_, OnCongestionWindowChange()); |
| EXPECT_CALL(*network_change_visitor_, OnRttChange()); |
| manager_.SetFromConfig(config); |
| |
| EXPECT_EQ(0, manager_.GetRttStats()->smoothed_rtt().ToMicroseconds()); |
| EXPECT_EQ(initial_rtt_us, manager_.GetRttStats()->initial_rtt_us()); |
| } |
| |
| TEST_F(QuicSentPacketManagerTest, ResumeConnectionState) { |
| // The sent packet manager should use the RTT from CachedNetworkParameters if |
| // it is provided. |
| const int kRttMs = 1234; |
| CachedNetworkParameters cached_network_params; |
| cached_network_params.set_min_rtt_ms(kRttMs); |
| |
| EXPECT_CALL(*send_algorithm_, ResumeConnectionState(_)); |
| manager_.ResumeConnectionState(cached_network_params); |
| EXPECT_EQ(kRttMs * kNumMicrosPerMilli, |
| static_cast<uint64>(manager_.GetRttStats()->initial_rtt_us())); |
| } |
| |
| } // namespace |
| } // namespace test |
| } // namespace net |