blob: d88b0059dd1d39c16c40d779d0cd6f720ebb21fd [file] [log] [blame]
#
# Parse tree nodes
#
import cython
cython.declare(sys=object, os=object, copy=object,
Builtin=object, error=object, warning=object, Naming=object, PyrexTypes=object,
py_object_type=object, ModuleScope=object, LocalScope=object, ClosureScope=object,
StructOrUnionScope=object, PyClassScope=object,
CppClassScope=object, UtilityCode=object, EncodedString=object,
absolute_path_length=cython.Py_ssize_t)
import sys, os, copy
from itertools import chain
import Builtin
from Errors import error, warning, InternalError, CompileError
import Naming
import PyrexTypes
import TypeSlots
from PyrexTypes import py_object_type, error_type
from Symtab import (ModuleScope, LocalScope, ClosureScope,
StructOrUnionScope, PyClassScope, CppClassScope, TemplateScope)
from Code import UtilityCode
from StringEncoding import EncodedString, escape_byte_string, split_string_literal
import Options
import DebugFlags
from Cython.Utils import cached_function
absolute_path_length = 0
def relative_position(pos):
"""
We embed the relative filename in the generated C file, since we
don't want to have to regenerate and compile all the source code
whenever the Python install directory moves (which could happen,
e.g,. when distributing binaries.)
INPUT:
a position tuple -- (absolute filename, line number column position)
OUTPUT:
relative filename
line number
AUTHOR: William Stein
"""
global absolute_path_length
if absolute_path_length==0:
absolute_path_length = len(os.path.abspath(os.getcwd()))
return (pos[0].get_filenametable_entry()[absolute_path_length+1:], pos[1])
def embed_position(pos, docstring):
if not Options.embed_pos_in_docstring:
return docstring
pos_line = u'File: %s (starting at line %s)' % relative_position(pos)
if docstring is None:
# unicode string
return EncodedString(pos_line)
# make sure we can encode the filename in the docstring encoding
# otherwise make the docstring a unicode string
encoding = docstring.encoding
if encoding is not None:
try:
pos_line.encode(encoding)
except UnicodeEncodeError:
encoding = None
if not docstring:
# reuse the string encoding of the original docstring
doc = EncodedString(pos_line)
else:
doc = EncodedString(pos_line + u'\n' + docstring)
doc.encoding = encoding
return doc
def write_func_call(func, codewriter_class):
def f(*args, **kwds):
if len(args) > 1 and isinstance(args[1], codewriter_class):
# here we annotate the code with this function call
# but only if new code is generated
node, code = args[:2]
marker = ' /* %s -> %s.%s %s */' % (
' ' * code.call_level,
node.__class__.__name__,
func.__name__,
node.pos[1:])
pristine = code.buffer.stream.tell()
code.putln(marker)
start = code.buffer.stream.tell()
code.call_level += 4
res = func(*args, **kwds)
code.call_level -= 4
if start == code.buffer.stream.tell():
code.buffer.stream.seek(pristine)
else:
marker = marker.replace('->', '<-')
code.putln(marker)
return res
else:
return func(*args, **kwds)
return f
class VerboseCodeWriter(type):
# Set this as a metaclass to trace function calls in code.
# This slows down code generation and makes much larger files.
def __new__(cls, name, bases, attrs):
from types import FunctionType
from Code import CCodeWriter
attrs = dict(attrs)
for mname, m in attrs.items():
if isinstance(m, FunctionType):
attrs[mname] = write_func_call(m, CCodeWriter)
return super(VerboseCodeWriter, cls).__new__(cls, name, bases, attrs)
class CheckAnalysers(type):
"""Metaclass to check that type analysis functions return a node.
"""
methods = set(['analyse_types',
'analyse_expressions',
'analyse_target_types'])
def __new__(cls, name, bases, attrs):
from types import FunctionType
def check(name, func):
def call(*args, **kwargs):
retval = func(*args, **kwargs)
if retval is None:
print name, args, kwargs
return retval
return call
attrs = dict(attrs)
for mname, m in attrs.items():
if isinstance(m, FunctionType) and mname in cls.methods:
attrs[mname] = check(mname, m)
return super(CheckAnalysers, cls).__new__(cls, name, bases, attrs)
class Node(object):
# pos (string, int, int) Source file position
# is_name boolean Is a NameNode
# is_literal boolean Is a ConstNode
#__metaclass__ = CheckAnalysers
if DebugFlags.debug_trace_code_generation:
__metaclass__ = VerboseCodeWriter
is_name = 0
is_none = 0
is_nonecheck = 0
is_literal = 0
is_terminator = 0
temps = None
# All descendants should set child_attrs to a list of the attributes
# containing nodes considered "children" in the tree. Each such attribute
# can either contain a single node or a list of nodes. See Visitor.py.
child_attrs = None
cf_state = None
# This may be an additional (or 'actual') type that will be checked when
# this node is coerced to another type. This could be useful to set when
# the actual type to which it can coerce is known, but you want to leave
# the type a py_object_type
coercion_type = None
def __init__(self, pos, **kw):
self.pos = pos
self.__dict__.update(kw)
gil_message = "Operation"
nogil_check = None
def gil_error(self, env=None):
error(self.pos, "%s not allowed without gil" % self.gil_message)
cpp_message = "Operation"
def cpp_check(self, env):
if not env.is_cpp():
self.cpp_error()
def cpp_error(self):
error(self.pos, "%s only allowed in c++" % self.cpp_message)
def clone_node(self):
"""Clone the node. This is defined as a shallow copy, except for member lists
amongst the child attributes (from get_child_accessors) which are also
copied. Lists containing child nodes are thus seen as a way for the node
to hold multiple children directly; the list is not treated as a separate
level in the tree."""
result = copy.copy(self)
for attrname in result.child_attrs:
value = getattr(result, attrname)
if isinstance(value, list):
setattr(result, attrname, [x for x in value])
return result
#
# There are 3 phases of parse tree processing, applied in order to
# all the statements in a given scope-block:
#
# (0) analyse_declarations
# Make symbol table entries for all declarations at the current
# level, both explicit (def, cdef, etc.) and implicit (assignment
# to an otherwise undeclared name).
#
# (1) analyse_expressions
# Determine the result types of expressions and fill in the
# 'type' attribute of each ExprNode. Insert coercion nodes into the
# tree where needed to convert to and from Python objects.
# Allocate temporary locals for intermediate results. Fill
# in the 'result_code' attribute of each ExprNode with a C code
# fragment.
#
# (2) generate_code
# Emit C code for all declarations, statements and expressions.
# Recursively applies the 3 processing phases to the bodies of
# functions.
#
def analyse_declarations(self, env):
pass
def analyse_expressions(self, env):
raise InternalError("analyse_expressions not implemented for %s" % \
self.__class__.__name__)
def generate_code(self, code):
raise InternalError("generate_code not implemented for %s" % \
self.__class__.__name__)
def annotate(self, code):
# mro does the wrong thing
if isinstance(self, BlockNode):
self.body.annotate(code)
def end_pos(self):
try:
return self._end_pos
except AttributeError:
pos = self.pos
if not self.child_attrs:
self._end_pos = pos
return pos
for attr in self.child_attrs:
child = getattr(self, attr)
# Sometimes lists, sometimes nodes
if child is None:
pass
elif isinstance(child, list):
for c in child:
pos = max(pos, c.end_pos())
else:
pos = max(pos, child.end_pos())
self._end_pos = pos
return pos
def dump(self, level=0, filter_out=("pos",), cutoff=100, encountered=None):
"""Debug helper method that returns a recursive string representation of this node.
"""
if cutoff == 0:
return "<...nesting level cutoff...>"
if encountered is None:
encountered = set()
if id(self) in encountered:
return "<%s (0x%x) -- already output>" % (self.__class__.__name__, id(self))
encountered.add(id(self))
def dump_child(x, level):
if isinstance(x, Node):
return x.dump(level, filter_out, cutoff-1, encountered)
elif isinstance(x, list):
return "[%s]" % ", ".join([dump_child(item, level) for item in x])
else:
return repr(x)
attrs = [(key, value) for key, value in self.__dict__.items() if key not in filter_out]
if len(attrs) == 0:
return "<%s (0x%x)>" % (self.__class__.__name__, id(self))
else:
indent = " " * level
res = "<%s (0x%x)\n" % (self.__class__.__name__, id(self))
for key, value in attrs:
res += "%s %s: %s\n" % (indent, key, dump_child(value, level + 1))
res += "%s>" % indent
return res
def dump_pos(self, mark_column=False, marker='(#)'):
"""Debug helper method that returns the source code context of this node as a string.
"""
if not self.pos:
return u''
source_desc, line, col = self.pos
contents = source_desc.get_lines(encoding='ASCII',
error_handling='ignore')
# line numbers start at 1
lines = contents[max(0,line-3):line]
current = lines[-1]
if mark_column:
current = current[:col] + marker + current[col:]
lines[-1] = current.rstrip() + u' # <<<<<<<<<<<<<<\n'
lines += contents[line:line+2]
return u'"%s":%d:%d\n%s\n' % (
source_desc.get_escaped_description(), line, col, u''.join(lines))
class CompilerDirectivesNode(Node):
"""
Sets compiler directives for the children nodes
"""
# directives {string:value} A dictionary holding the right value for
# *all* possible directives.
# body Node
child_attrs = ["body"]
def analyse_declarations(self, env):
old = env.directives
env.directives = self.directives
self.body.analyse_declarations(env)
env.directives = old
def analyse_expressions(self, env):
old = env.directives
env.directives = self.directives
self.body = self.body.analyse_expressions(env)
env.directives = old
return self
def generate_function_definitions(self, env, code):
env_old = env.directives
code_old = code.globalstate.directives
code.globalstate.directives = self.directives
self.body.generate_function_definitions(env, code)
env.directives = env_old
code.globalstate.directives = code_old
def generate_execution_code(self, code):
old = code.globalstate.directives
code.globalstate.directives = self.directives
self.body.generate_execution_code(code)
code.globalstate.directives = old
def annotate(self, code):
old = code.globalstate.directives
code.globalstate.directives = self.directives
self.body.annotate(code)
code.globalstate.directives = old
class BlockNode(object):
# Mixin class for nodes representing a declaration block.
def generate_cached_builtins_decls(self, env, code):
entries = env.global_scope().undeclared_cached_builtins
for entry in entries:
code.globalstate.add_cached_builtin_decl(entry)
del entries[:]
def generate_lambda_definitions(self, env, code):
for node in env.lambda_defs:
node.generate_function_definitions(env, code)
class StatListNode(Node):
# stats a list of StatNode
child_attrs = ["stats"]
def create_analysed(pos, env, *args, **kw):
node = StatListNode(pos, *args, **kw)
return node # No node-specific analysis necesarry
create_analysed = staticmethod(create_analysed)
def analyse_declarations(self, env):
#print "StatListNode.analyse_declarations" ###
for stat in self.stats:
stat.analyse_declarations(env)
def analyse_expressions(self, env):
#print "StatListNode.analyse_expressions" ###
self.stats = [ stat.analyse_expressions(env)
for stat in self.stats ]
return self
def generate_function_definitions(self, env, code):
#print "StatListNode.generate_function_definitions" ###
for stat in self.stats:
stat.generate_function_definitions(env, code)
def generate_execution_code(self, code):
#print "StatListNode.generate_execution_code" ###
for stat in self.stats:
code.mark_pos(stat.pos)
stat.generate_execution_code(code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)
class StatNode(Node):
#
# Code generation for statements is split into the following subphases:
#
# (1) generate_function_definitions
# Emit C code for the definitions of any structs,
# unions, enums and functions defined in the current
# scope-block.
#
# (2) generate_execution_code
# Emit C code for executable statements.
#
def generate_function_definitions(self, env, code):
pass
def generate_execution_code(self, code):
raise InternalError("generate_execution_code not implemented for %s" % \
self.__class__.__name__)
class CDefExternNode(StatNode):
# include_file string or None
# body StatNode
child_attrs = ["body"]
def analyse_declarations(self, env):
if self.include_file:
env.add_include_file(self.include_file)
old_cinclude_flag = env.in_cinclude
env.in_cinclude = 1
self.body.analyse_declarations(env)
env.in_cinclude = old_cinclude_flag
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
def annotate(self, code):
self.body.annotate(code)
class CDeclaratorNode(Node):
# Part of a C declaration.
#
# Processing during analyse_declarations phase:
#
# analyse
# Returns (name, type) pair where name is the
# CNameDeclaratorNode of the name being declared
# and type is the type it is being declared as.
#
# calling_convention string Calling convention of CFuncDeclaratorNode
# for which this is a base
child_attrs = []
calling_convention = ""
def analyse_templates(self):
# Only C++ functions have templates.
return None
class CNameDeclaratorNode(CDeclaratorNode):
# name string The Cython name being declared
# cname string or None C name, if specified
# default ExprNode or None the value assigned on declaration
child_attrs = ['default']
default = None
def analyse(self, base_type, env, nonempty = 0):
if nonempty and self.name == '':
# May have mistaken the name for the type.
if base_type.is_ptr or base_type.is_array or base_type.is_buffer:
error(self.pos, "Missing argument name")
elif base_type.is_void:
error(self.pos, "Use spam() rather than spam(void) to declare a function with no arguments.")
else:
self.name = base_type.declaration_code("", for_display=1, pyrex=1)
base_type = py_object_type
if base_type.is_fused and env.fused_to_specific:
base_type = base_type.specialize(env.fused_to_specific)
self.type = base_type
return self, base_type
class CPtrDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
child_attrs = ["base"]
def analyse(self, base_type, env, nonempty = 0):
if base_type.is_pyobject:
error(self.pos,
"Pointer base type cannot be a Python object")
ptr_type = PyrexTypes.c_ptr_type(base_type)
return self.base.analyse(ptr_type, env, nonempty = nonempty)
class CReferenceDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
child_attrs = ["base"]
def analyse(self, base_type, env, nonempty = 0):
if base_type.is_pyobject:
error(self.pos,
"Reference base type cannot be a Python object")
ref_type = PyrexTypes.c_ref_type(base_type)
return self.base.analyse(ref_type, env, nonempty = nonempty)
class CArrayDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
# dimension ExprNode
child_attrs = ["base", "dimension"]
def analyse(self, base_type, env, nonempty = 0):
if base_type.is_cpp_class or base_type.is_cfunction:
from ExprNodes import TupleNode
if isinstance(self.dimension, TupleNode):
args = self.dimension.args
else:
args = self.dimension,
values = [v.analyse_as_type(env) for v in args]
if None in values:
ix = values.index(None)
error(args[ix].pos, "Template parameter not a type")
base_type = error_type
else:
base_type = base_type.specialize_here(self.pos, values)
return self.base.analyse(base_type, env, nonempty = nonempty)
if self.dimension:
self.dimension = self.dimension.analyse_const_expression(env)
if not self.dimension.type.is_int:
error(self.dimension.pos, "Array dimension not integer")
size = self.dimension.get_constant_c_result_code()
if size is not None:
try:
size = int(size)
except ValueError:
# runtime constant?
pass
else:
size = None
if not base_type.is_complete():
error(self.pos,
"Array element type '%s' is incomplete" % base_type)
if base_type.is_pyobject:
error(self.pos,
"Array element cannot be a Python object")
if base_type.is_cfunction:
error(self.pos,
"Array element cannot be a function")
array_type = PyrexTypes.c_array_type(base_type, size)
return self.base.analyse(array_type, env, nonempty = nonempty)
class CFuncDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
# args [CArgDeclNode]
# templates [TemplatePlaceholderType]
# has_varargs boolean
# exception_value ConstNode
# exception_check boolean True if PyErr_Occurred check needed
# nogil boolean Can be called without gil
# with_gil boolean Acquire gil around function body
# is_const_method boolean Whether this is a const method
child_attrs = ["base", "args", "exception_value"]
overridable = 0
optional_arg_count = 0
is_const_method = 0
templates = None
def analyse_templates(self):
if isinstance(self.base, CArrayDeclaratorNode):
from ExprNodes import TupleNode, NameNode
template_node = self.base.dimension
if isinstance(template_node, TupleNode):
template_nodes = template_node.args
elif isinstance(template_node, NameNode):
template_nodes = [template_node]
else:
error(template_node.pos, "Template arguments must be a list of names")
return None
self.templates = []
for template in template_nodes:
if isinstance(template, NameNode):
self.templates.append(PyrexTypes.TemplatePlaceholderType(template.name))
else:
error(template.pos, "Template arguments must be a list of names")
self.base = self.base.base
return self.templates
else:
return None
def analyse(self, return_type, env, nonempty = 0, directive_locals = {}):
if nonempty:
nonempty -= 1
func_type_args = []
for i, arg_node in enumerate(self.args):
name_declarator, type = arg_node.analyse(env, nonempty = nonempty,
is_self_arg = (i == 0 and env.is_c_class_scope))
name = name_declarator.name
if name in directive_locals:
type_node = directive_locals[name]
other_type = type_node.analyse_as_type(env)
if other_type is None:
error(type_node.pos, "Not a type")
elif (type is not PyrexTypes.py_object_type
and not type.same_as(other_type)):
error(self.base.pos, "Signature does not agree with previous declaration")
error(type_node.pos, "Previous declaration here")
else:
type = other_type
if name_declarator.cname:
error(self.pos,
"Function argument cannot have C name specification")
if i==0 and env.is_c_class_scope and type.is_unspecified:
# fix the type of self
type = env.parent_type
# Turn *[] argument into **
if type.is_array:
type = PyrexTypes.c_ptr_type(type.base_type)
# Catch attempted C-style func(void) decl
if type.is_void:
error(arg_node.pos, "Use spam() rather than spam(void) to declare a function with no arguments.")
func_type_args.append(
PyrexTypes.CFuncTypeArg(name, type, arg_node.pos))
if arg_node.default:
self.optional_arg_count += 1
elif self.optional_arg_count:
error(self.pos, "Non-default argument follows default argument")
exc_val = None
exc_check = 0
if self.exception_check == '+':
env.add_include_file('ios') # for std::ios_base::failure
env.add_include_file('new') # for std::bad_alloc
env.add_include_file('stdexcept')
env.add_include_file('typeinfo') # for std::bad_cast
if (return_type.is_pyobject
and (self.exception_value or self.exception_check)
and self.exception_check != '+'):
error(self.pos,
"Exception clause not allowed for function returning Python object")
else:
if self.exception_value:
self.exception_value = self.exception_value.analyse_const_expression(env)
if self.exception_check == '+':
exc_val_type = self.exception_value.type
if (not exc_val_type.is_error
and not exc_val_type.is_pyobject
and not (exc_val_type.is_cfunction
and not exc_val_type.return_type.is_pyobject
and not exc_val_type.args)):
error(self.exception_value.pos,
"Exception value must be a Python exception or cdef function with no arguments.")
exc_val = self.exception_value
else:
self.exception_value = self.exception_value.coerce_to(
return_type, env).analyse_const_expression(env)
exc_val = self.exception_value.get_constant_c_result_code()
if exc_val is None:
raise InternalError(
"get_constant_c_result_code not implemented for %s" %
self.exception_value.__class__.__name__)
if not return_type.assignable_from(self.exception_value.type):
error(self.exception_value.pos,
"Exception value incompatible with function return type")
exc_check = self.exception_check
if return_type.is_cfunction:
error(self.pos,
"Function cannot return a function")
func_type = PyrexTypes.CFuncType(
return_type, func_type_args, self.has_varargs,
optional_arg_count = self.optional_arg_count,
exception_value = exc_val, exception_check = exc_check,
calling_convention = self.base.calling_convention,
nogil = self.nogil, with_gil = self.with_gil, is_overridable = self.overridable,
is_const_method = self.is_const_method,
templates = self.templates)
if self.optional_arg_count:
if func_type.is_fused:
# This is a bit of a hack... When we need to create specialized CFuncTypes
# on the fly because the cdef is defined in a pxd, we need to declare the specialized optional arg
# struct
def declare_opt_arg_struct(func_type, fused_cname):
self.declare_optional_arg_struct(func_type, env, fused_cname)
func_type.declare_opt_arg_struct = declare_opt_arg_struct
else:
self.declare_optional_arg_struct(func_type, env)
callspec = env.directives['callspec']
if callspec:
current = func_type.calling_convention
if current and current != callspec:
error(self.pos, "cannot have both '%s' and '%s' "
"calling conventions" % (current, callspec))
func_type.calling_convention = callspec
return self.base.analyse(func_type, env)
def declare_optional_arg_struct(self, func_type, env, fused_cname=None):
"""
Declares the optional argument struct (the struct used to hold the
values for optional arguments). For fused cdef functions, this is
deferred as analyse_declarations is called only once (on the fused
cdef function).
"""
scope = StructOrUnionScope()
arg_count_member = '%sn' % Naming.pyrex_prefix
scope.declare_var(arg_count_member, PyrexTypes.c_int_type, self.pos)
for arg in func_type.args[len(func_type.args)-self.optional_arg_count:]:
scope.declare_var(arg.name, arg.type, arg.pos, allow_pyobject = 1)
struct_cname = env.mangle(Naming.opt_arg_prefix, self.base.name)
if fused_cname is not None:
struct_cname = PyrexTypes.get_fused_cname(fused_cname, struct_cname)
op_args_struct = env.global_scope().declare_struct_or_union(
name = struct_cname,
kind = 'struct',
scope = scope,
typedef_flag = 0,
pos = self.pos,
cname = struct_cname)
op_args_struct.defined_in_pxd = 1
op_args_struct.used = 1
func_type.op_arg_struct = PyrexTypes.c_ptr_type(op_args_struct.type)
class CConstDeclaratorNode(CDeclaratorNode):
# base CDeclaratorNode
child_attrs = ["base"]
def analyse(self, base_type, env, nonempty = 0):
if base_type.is_pyobject:
error(self.pos,
"Const base type cannot be a Python object")
const = PyrexTypes.c_const_type(base_type)
return self.base.analyse(const, env, nonempty = nonempty)
class CArgDeclNode(Node):
# Item in a function declaration argument list.
#
# base_type CBaseTypeNode
# declarator CDeclaratorNode
# not_none boolean Tagged with 'not None'
# or_none boolean Tagged with 'or None'
# accept_none boolean Resolved boolean for not_none/or_none
# default ExprNode or None
# default_value PyObjectConst constant for default value
# annotation ExprNode or None Py3 function arg annotation
# is_self_arg boolean Is the "self" arg of an extension type method
# is_type_arg boolean Is the "class" arg of an extension type classmethod
# is_kw_only boolean Is a keyword-only argument
# is_dynamic boolean Non-literal arg stored inside CyFunction
child_attrs = ["base_type", "declarator", "default", "annotation"]
is_self_arg = 0
is_type_arg = 0
is_generic = 1
kw_only = 0
not_none = 0
or_none = 0
type = None
name_declarator = None
default_value = None
annotation = None
is_dynamic = 0
def analyse(self, env, nonempty = 0, is_self_arg = False):
if is_self_arg:
self.base_type.is_self_arg = self.is_self_arg = True
if self.type is None:
# The parser may misinterpret names as types. We fix that here.
if isinstance(self.declarator, CNameDeclaratorNode) and self.declarator.name == '':
if nonempty:
if self.base_type.is_basic_c_type:
# char, short, long called "int"
type = self.base_type.analyse(env, could_be_name = True)
arg_name = type.declaration_code("")
else:
arg_name = self.base_type.name
self.declarator.name = EncodedString(arg_name)
self.base_type.name = None
self.base_type.is_basic_c_type = False
could_be_name = True
else:
could_be_name = False
self.base_type.is_arg = True
base_type = self.base_type.analyse(env, could_be_name = could_be_name)
if hasattr(self.base_type, 'arg_name') and self.base_type.arg_name:
self.declarator.name = self.base_type.arg_name
# The parser is unable to resolve the ambiguity of [] as part of the
# type (e.g. in buffers) or empty declarator (as with arrays).
# This is only arises for empty multi-dimensional arrays.
if (base_type.is_array
and isinstance(self.base_type, TemplatedTypeNode)
and isinstance(self.declarator, CArrayDeclaratorNode)):
declarator = self.declarator
while isinstance(declarator.base, CArrayDeclaratorNode):
declarator = declarator.base
declarator.base = self.base_type.array_declarator
base_type = base_type.base_type
return self.declarator.analyse(base_type, env, nonempty = nonempty)
else:
return self.name_declarator, self.type
def calculate_default_value_code(self, code):
if self.default_value is None:
if self.default:
if self.default.is_literal:
# will not output any code, just assign the result_code
self.default.generate_evaluation_code(code)
return self.type.cast_code(self.default.result())
self.default_value = code.get_argument_default_const(self.type)
return self.default_value
def annotate(self, code):
if self.default:
self.default.annotate(code)
def generate_assignment_code(self, code, target=None):
default = self.default
if default is None or default.is_literal:
return
if target is None:
target = self.calculate_default_value_code(code)
default.generate_evaluation_code(code)
default.make_owned_reference(code)
result = default.result_as(self.type)
code.putln("%s = %s;" % (target, result))
if self.type.is_pyobject:
code.put_giveref(default.result())
default.generate_post_assignment_code(code)
default.free_temps(code)
class CBaseTypeNode(Node):
# Abstract base class for C base type nodes.
#
# Processing during analyse_declarations phase:
#
# analyse
# Returns the type.
pass
def analyse_as_type(self, env):
return self.analyse(env)
class CAnalysedBaseTypeNode(Node):
# type type
child_attrs = []
def analyse(self, env, could_be_name = False):
return self.type
class CSimpleBaseTypeNode(CBaseTypeNode):
# name string
# module_path [string] Qualifying name components
# is_basic_c_type boolean
# signed boolean
# longness integer
# complex boolean
# is_self_arg boolean Is self argument of C method
# ##is_type_arg boolean Is type argument of class method
child_attrs = []
arg_name = None # in case the argument name was interpreted as a type
module_path = []
is_basic_c_type = False
complex = False
def analyse(self, env, could_be_name = False):
# Return type descriptor.
#print "CSimpleBaseTypeNode.analyse: is_self_arg =", self.is_self_arg ###
type = None
if self.is_basic_c_type:
type = PyrexTypes.simple_c_type(self.signed, self.longness, self.name)
if not type:
error(self.pos, "Unrecognised type modifier combination")
elif self.name == "object" and not self.module_path:
type = py_object_type
elif self.name is None:
if self.is_self_arg and env.is_c_class_scope:
#print "CSimpleBaseTypeNode.analyse: defaulting to parent type" ###
type = env.parent_type
## elif self.is_type_arg and env.is_c_class_scope:
## type = Builtin.type_type
else:
type = py_object_type
else:
if self.module_path:
# Maybe it's a nested C++ class.
scope = env
for item in self.module_path:
entry = scope.lookup(item)
if entry is not None and entry.is_cpp_class:
scope = entry.type.scope
else:
scope = None
break
if scope is None:
# Maybe it's a cimport.
scope = env.find_imported_module(self.module_path, self.pos)
if scope:
scope.fused_to_specific = env.fused_to_specific
else:
scope = env
if scope:
if scope.is_c_class_scope:
scope = scope.global_scope()
type = scope.lookup_type(self.name)
if type is not None:
pass
elif could_be_name:
if self.is_self_arg and env.is_c_class_scope:
type = env.parent_type
## elif self.is_type_arg and env.is_c_class_scope:
## type = Builtin.type_type
else:
type = py_object_type
self.arg_name = EncodedString(self.name)
else:
if self.templates:
if not self.name in self.templates:
error(self.pos, "'%s' is not a type identifier" % self.name)
type = PyrexTypes.TemplatePlaceholderType(self.name)
else:
error(self.pos, "'%s' is not a type identifier" % self.name)
if self.complex:
if not type.is_numeric or type.is_complex:
error(self.pos, "can only complexify c numeric types")
type = PyrexTypes.CComplexType(type)
type.create_declaration_utility_code(env)
elif type is Builtin.complex_type:
# Special case: optimise builtin complex type into C's
# double complex. The parser cannot do this (as for the
# normal scalar types) as the user may have redeclared the
# 'complex' type. Testing for the exact type here works.
type = PyrexTypes.c_double_complex_type
type.create_declaration_utility_code(env)
self.complex = True
if type:
return type
else:
return PyrexTypes.error_type
class MemoryViewSliceTypeNode(CBaseTypeNode):
name = 'memoryview'
child_attrs = ['base_type_node', 'axes']
def analyse(self, env, could_be_name = False):
base_type = self.base_type_node.analyse(env)
if base_type.is_error: return base_type
import MemoryView
try:
axes_specs = MemoryView.get_axes_specs(env, self.axes)
except CompileError, e:
error(e.position, e.message_only)
self.type = PyrexTypes.ErrorType()
return self.type
if not MemoryView.validate_axes(self.pos, axes_specs):
self.type = error_type
else:
MemoryView.validate_memslice_dtype(self.pos, base_type)
self.type = PyrexTypes.MemoryViewSliceType(base_type, axes_specs)
self.use_memview_utilities(env)
return self.type
def use_memview_utilities(self, env):
import MemoryView
env.use_utility_code(MemoryView.view_utility_code)
class CNestedBaseTypeNode(CBaseTypeNode):
# For C++ classes that live inside other C++ classes.
# name string
# base_type CBaseTypeNode
child_attrs = ['base_type']
def analyse(self, env, could_be_name = None):
base_type = self.base_type.analyse(env)
if base_type is PyrexTypes.error_type:
return PyrexTypes.error_type
if not base_type.is_cpp_class:
error(self.pos, "'%s' is not a valid type scope" % base_type)
return PyrexTypes.error_type
type_entry = base_type.scope.lookup_here(self.name)
if not type_entry or not type_entry.is_type:
error(self.pos, "'%s.%s' is not a type identifier" % (base_type, self.name))
return PyrexTypes.error_type
return type_entry.type
class TemplatedTypeNode(CBaseTypeNode):
# After parsing:
# positional_args [ExprNode] List of positional arguments
# keyword_args DictNode Keyword arguments
# base_type_node CBaseTypeNode
# After analysis:
# type PyrexTypes.BufferType or PyrexTypes.CppClassType ...containing the right options
child_attrs = ["base_type_node", "positional_args",
"keyword_args", "dtype_node"]
dtype_node = None
name = None
def analyse(self, env, could_be_name = False, base_type = None):
if base_type is None:
base_type = self.base_type_node.analyse(env)
if base_type.is_error: return base_type
if base_type.is_cpp_class:
# Templated class
if self.keyword_args and self.keyword_args.key_value_pairs:
error(self.pos, "c++ templates cannot take keyword arguments")
self.type = PyrexTypes.error_type
else:
template_types = []
for template_node in self.positional_args:
type = template_node.analyse_as_type(env)
if type is None:
error(template_node.pos, "unknown type in template argument")
return error_type
template_types.append(type)
self.type = base_type.specialize_here(self.pos, template_types)
elif base_type.is_pyobject:
# Buffer
import Buffer
options = Buffer.analyse_buffer_options(
self.pos,
env,
self.positional_args,
self.keyword_args,
base_type.buffer_defaults)
if sys.version_info[0] < 3:
# Py 2.x enforces byte strings as keyword arguments ...
options = dict([ (name.encode('ASCII'), value)
for name, value in options.items() ])
self.type = PyrexTypes.BufferType(base_type, **options)
else:
# Array
empty_declarator = CNameDeclaratorNode(self.pos, name="", cname=None)
if len(self.positional_args) > 1 or self.keyword_args.key_value_pairs:
error(self.pos, "invalid array declaration")
self.type = PyrexTypes.error_type
else:
# It would be nice to merge this class with CArrayDeclaratorNode,
# but arrays are part of the declaration, not the type...
if not self.positional_args:
dimension = None
else:
dimension = self.positional_args[0]
self.array_declarator = CArrayDeclaratorNode(self.pos,
base = empty_declarator,
dimension = dimension)
self.type = self.array_declarator.analyse(base_type, env)[1]
if self.type.is_fused and env.fused_to_specific:
self.type = self.type.specialize(env.fused_to_specific)
return self.type
class CComplexBaseTypeNode(CBaseTypeNode):
# base_type CBaseTypeNode
# declarator CDeclaratorNode
child_attrs = ["base_type", "declarator"]
def analyse(self, env, could_be_name = False):
base = self.base_type.analyse(env, could_be_name)
_, type = self.declarator.analyse(base, env)
return type
class FusedTypeNode(CBaseTypeNode):
"""
Represents a fused type in a ctypedef statement:
ctypedef cython.fused_type(int, long, long long) integral
name str name of this fused type
types [CSimpleBaseTypeNode] is the list of types to be fused
"""
child_attrs = []
def analyse_declarations(self, env):
type = self.analyse(env)
entry = env.declare_typedef(self.name, type, self.pos)
# Omit the typedef declaration that self.declarator would produce
entry.in_cinclude = True
def analyse(self, env):
types = []
for type_node in self.types:
type = type_node.analyse_as_type(env)
if not type:
error(type_node.pos, "Not a type")
continue
if type in types:
error(type_node.pos, "Type specified multiple times")
elif type.is_fused:
error(type_node.pos, "Cannot fuse a fused type")
else:
types.append(type)
# if len(self.types) == 1:
# return types[0]
return PyrexTypes.FusedType(types, name=self.name)
class CConstTypeNode(CBaseTypeNode):
# base_type CBaseTypeNode
child_attrs = ["base_type"]
def analyse(self, env, could_be_name = False):
base = self.base_type.analyse(env, could_be_name)
if base.is_pyobject:
error(self.pos,
"Const base type cannot be a Python object")
return PyrexTypes.c_const_type(base)
class CVarDefNode(StatNode):
# C variable definition or forward/extern function declaration.
#
# visibility 'private' or 'public' or 'extern'
# base_type CBaseTypeNode
# declarators [CDeclaratorNode]
# in_pxd boolean
# api boolean
# overridable boolean whether it is a cpdef
# modifiers ['inline']
# decorators [cython.locals(...)] or None
# directive_locals { string : NameNode } locals defined by cython.locals(...)
child_attrs = ["base_type", "declarators"]
decorators = None
directive_locals = None
def analyse_declarations(self, env, dest_scope = None):
if self.directive_locals is None:
self.directive_locals = {}
if not dest_scope:
dest_scope = env
self.dest_scope = dest_scope
if self.declarators:
templates = self.declarators[0].analyse_templates()
else:
templates = None
if templates is not None:
if self.visibility != 'extern':
error(self.pos, "Only extern functions allowed")
if len(self.declarators) > 1:
error(self.declarators[1].pos, "Can't multiply declare template types")
env = TemplateScope('func_template', env)
env.directives = env.outer_scope.directives
for template_param in templates:
env.declare_type(template_param.name, template_param, self.pos)
base_type = self.base_type.analyse(env)
if base_type.is_fused and not self.in_pxd and (env.is_c_class_scope or
env.is_module_scope):
error(self.pos, "Fused types not allowed here")
return error_type
self.entry = None
visibility = self.visibility
for declarator in self.declarators:
if (len(self.declarators) > 1
and not isinstance(declarator, CNameDeclaratorNode)
and env.directives['warn.multiple_declarators']):
warning(declarator.pos,
"Non-trivial type declarators in shared declaration (e.g. mix of pointers and values). " +
"Each pointer declaration should be on its own line.", 1)
if isinstance(declarator, CFuncDeclaratorNode):
name_declarator, type = declarator.analyse(base_type, env, directive_locals=self.directive_locals)
else:
name_declarator, type = declarator.analyse(base_type, env)
if not type.is_complete():
if not (self.visibility == 'extern' and type.is_array or type.is_memoryviewslice):
error(declarator.pos,
"Variable type '%s' is incomplete" % type)
if self.visibility == 'extern' and type.is_pyobject:
error(declarator.pos,
"Python object cannot be declared extern")
name = name_declarator.name
cname = name_declarator.cname
if name == '':
error(declarator.pos, "Missing name in declaration.")
return
if type.is_cfunction:
self.entry = dest_scope.declare_cfunction(name, type, declarator.pos,
cname = cname, visibility = self.visibility, in_pxd = self.in_pxd,
api = self.api, modifiers = self.modifiers)
if self.entry is not None:
self.entry.is_overridable = self.overridable
self.entry.directive_locals = copy.copy(self.directive_locals)
else:
if self.directive_locals:
error(self.pos, "Decorators can only be followed by functions")
self.entry = dest_scope.declare_var(name, type, declarator.pos,
cname=cname, visibility=visibility, in_pxd=self.in_pxd,
api=self.api, is_cdef=1)
if Options.docstrings:
self.entry.doc = embed_position(self.pos, self.doc)
class CStructOrUnionDefNode(StatNode):
# name string
# cname string or None
# kind "struct" or "union"
# typedef_flag boolean
# visibility "public" or "private"
# api boolean
# in_pxd boolean
# attributes [CVarDefNode] or None
# entry Entry
# packed boolean
child_attrs = ["attributes"]
def declare(self, env, scope=None):
if self.visibility == 'extern' and self.packed and not scope:
error(self.pos, "Cannot declare extern struct as 'packed'")
self.entry = env.declare_struct_or_union(
self.name, self.kind, scope, self.typedef_flag, self.pos,
self.cname, visibility = self.visibility, api = self.api,
packed = self.packed)
def analyse_declarations(self, env):
scope = None
if self.attributes is not None:
scope = StructOrUnionScope(self.name)
self.declare(env, scope)
if self.attributes is not None:
if self.in_pxd and not env.in_cinclude:
self.entry.defined_in_pxd = 1
for attr in self.attributes:
attr.analyse_declarations(env, scope)
if self.visibility != 'extern':
for attr in scope.var_entries:
type = attr.type
while type.is_array:
type = type.base_type
if type == self.entry.type:
error(attr.pos, "Struct cannot contain itself as a member.")
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class CppClassNode(CStructOrUnionDefNode, BlockNode):
# name string
# cname string or None
# visibility "extern"
# in_pxd boolean
# attributes [CVarDefNode] or None
# entry Entry
# base_classes [CBaseTypeNode]
# templates [string] or None
def declare(self, env):
if self.templates is None:
template_types = None
else:
template_types = [PyrexTypes.TemplatePlaceholderType(template_name) for template_name in self.templates]
self.entry = env.declare_cpp_class(
self.name, None, self.pos,
self.cname, base_classes = [], visibility = self.visibility, templates = template_types)
def analyse_declarations(self, env):
scope = None
if self.attributes is not None:
scope = CppClassScope(self.name, env, templates = self.templates)
def base_ok(base_class):
if base_class.is_cpp_class or base_class.is_struct:
return True
else:
error(self.pos, "Base class '%s' not a struct or class." % base_class)
base_class_types = filter(base_ok, [b.analyse(scope or env) for b in self.base_classes])
if self.templates is None:
template_types = None
else:
template_types = [PyrexTypes.TemplatePlaceholderType(template_name) for template_name in self.templates]
self.entry = env.declare_cpp_class(
self.name, scope, self.pos,
self.cname, base_class_types, visibility = self.visibility, templates = template_types)
if self.entry is None:
return
self.entry.is_cpp_class = 1
if scope is not None:
scope.type = self.entry.type
defined_funcs = []
if self.attributes is not None:
if self.in_pxd and not env.in_cinclude:
self.entry.defined_in_pxd = 1
for attr in self.attributes:
attr.analyse_declarations(scope)
if isinstance(attr, CFuncDefNode):
defined_funcs.append(attr)
if self.templates is not None:
attr.template_declaration = "template <typename %s>" % ", typename ".join(self.templates)
self.body = StatListNode(self.pos, stats=defined_funcs)
self.scope = scope
def analyse_expressions(self, env):
self.body = self.body.analyse_expressions(self.entry.type.scope)
return self
def generate_function_definitions(self, env, code):
self.body.generate_function_definitions(self.entry.type.scope, code)
def generate_execution_code(self, code):
self.body.generate_execution_code(code)
def annotate(self, code):
self.body.annotate(code)
class CEnumDefNode(StatNode):
# name string or None
# cname string or None
# items [CEnumDefItemNode]
# typedef_flag boolean
# visibility "public" or "private"
# api boolean
# in_pxd boolean
# entry Entry
child_attrs = ["items"]
def declare(self, env):
self.entry = env.declare_enum(self.name, self.pos,
cname = self.cname, typedef_flag = self.typedef_flag,
visibility = self.visibility, api = self.api)
def analyse_declarations(self, env):
if self.items is not None:
if self.in_pxd and not env.in_cinclude:
self.entry.defined_in_pxd = 1
for item in self.items:
item.analyse_declarations(env, self.entry)
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
if self.visibility == 'public' or self.api:
temp = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True)
for item in self.entry.enum_values:
code.putln("%s = PyInt_FromLong(%s); %s" % (
temp,
item.cname,
code.error_goto_if_null(temp, item.pos)))
code.put_gotref(temp)
code.putln('if (PyDict_SetItemString(%s, "%s", %s) < 0) %s' % (
Naming.moddict_cname,
item.name,
temp,
code.error_goto(item.pos)))
code.put_decref_clear(temp, PyrexTypes.py_object_type)
code.funcstate.release_temp(temp)
class CEnumDefItemNode(StatNode):
# name string
# cname string or None
# value ExprNode or None
child_attrs = ["value"]
def analyse_declarations(self, env, enum_entry):
if self.value:
self.value = self.value.analyse_const_expression(env)
if not self.value.type.is_int:
self.value = self.value.coerce_to(PyrexTypes.c_int_type, env)
self.value = self.value.analyse_const_expression(env)
entry = env.declare_const(self.name, enum_entry.type,
self.value, self.pos, cname = self.cname,
visibility = enum_entry.visibility, api = enum_entry.api)
enum_entry.enum_values.append(entry)
class CTypeDefNode(StatNode):
# base_type CBaseTypeNode
# declarator CDeclaratorNode
# visibility "public" or "private"
# api boolean
# in_pxd boolean
child_attrs = ["base_type", "declarator"]
def analyse_declarations(self, env):
base = self.base_type.analyse(env)
name_declarator, type = self.declarator.analyse(base, env)
name = name_declarator.name
cname = name_declarator.cname
entry = env.declare_typedef(name, type, self.pos,
cname = cname, visibility = self.visibility, api = self.api)
if type.is_fused:
entry.in_cinclude = True
if self.in_pxd and not env.in_cinclude:
entry.defined_in_pxd = 1
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class FuncDefNode(StatNode, BlockNode):
# Base class for function definition nodes.
#
# return_type PyrexType
# #filename string C name of filename string const
# entry Symtab.Entry
# needs_closure boolean Whether or not this function has inner functions/classes/yield
# needs_outer_scope boolean Whether or not this function requires outer scope
# pymethdef_required boolean Force Python method struct generation
# directive_locals { string : ExprNode } locals defined by cython.locals(...)
# directive_returns [ExprNode] type defined by cython.returns(...)
# star_arg PyArgDeclNode or None * argument
# starstar_arg PyArgDeclNode or None ** argument
# has_fused_arguments boolean
# Whether this cdef function has fused parameters. This is needed
# by AnalyseDeclarationsTransform, so it can replace CFuncDefNodes
# with fused argument types with a FusedCFuncDefNode
py_func = None
needs_closure = False
needs_outer_scope = False
pymethdef_required = False
is_generator = False
is_generator_body = False
modifiers = []
has_fused_arguments = False
star_arg = None
starstar_arg = None
is_cyfunction = False
def analyse_default_values(self, env):
default_seen = 0
for arg in self.args:
if arg.default:
default_seen = 1
if arg.is_generic:
arg.default = arg.default.analyse_types(env)
arg.default = arg.default.coerce_to(arg.type, env)
else:
error(arg.pos,
"This argument cannot have a default value")
arg.default = None
elif arg.kw_only:
default_seen = 1
elif default_seen:
error(arg.pos, "Non-default argument following default argument")
def align_argument_type(self, env, arg):
directive_locals = self.directive_locals
type = arg.type
if arg.name in directive_locals:
type_node = directive_locals[arg.name]
other_type = type_node.analyse_as_type(env)
if other_type is None:
error(type_node.pos, "Not a type")
elif (type is not PyrexTypes.py_object_type
and not type.same_as(other_type)):
error(arg.base_type.pos, "Signature does not agree with previous declaration")
error(type_node.pos, "Previous declaration here")
else:
arg.type = other_type
return arg
def need_gil_acquisition(self, lenv):
return 0
def create_local_scope(self, env):
genv = env
while genv.is_py_class_scope or genv.is_c_class_scope:
genv = genv.outer_scope
if self.needs_closure:
lenv = ClosureScope(name=self.entry.name,
outer_scope = genv,
parent_scope = env,
scope_name=self.entry.cname)
else:
lenv = LocalScope(name=self.entry.name,
outer_scope=genv,
parent_scope=env)
lenv.return_type = self.return_type
type = self.entry.type
if type.is_cfunction:
lenv.nogil = type.nogil and not type.with_gil
self.local_scope = lenv
lenv.directives = env.directives
return lenv
def generate_function_body(self, env, code):
self.body.generate_execution_code(code)
def generate_function_definitions(self, env, code):
import Buffer
if self.return_type.is_memoryviewslice:
import MemoryView
lenv = self.local_scope
if lenv.is_closure_scope and not lenv.is_passthrough:
outer_scope_cname = "%s->%s" % (Naming.cur_scope_cname,
Naming.outer_scope_cname)
else:
outer_scope_cname = Naming.outer_scope_cname
lenv.mangle_closure_cnames(outer_scope_cname)
# Generate closure function definitions
self.body.generate_function_definitions(lenv, code)
# generate lambda function definitions
self.generate_lambda_definitions(lenv, code)
is_getbuffer_slot = (self.entry.name == "__getbuffer__" and
self.entry.scope.is_c_class_scope)
is_releasebuffer_slot = (self.entry.name == "__releasebuffer__" and
self.entry.scope.is_c_class_scope)
is_buffer_slot = is_getbuffer_slot or is_releasebuffer_slot
if is_buffer_slot:
if 'cython_unused' not in self.modifiers:
self.modifiers = self.modifiers + ['cython_unused']
preprocessor_guard = self.get_preprocessor_guard()
profile = code.globalstate.directives['profile']
linetrace = code.globalstate.directives['linetrace']
if (linetrace or profile) and lenv.nogil:
warning(self.pos, "Cannot profile nogil function.", 1)
profile = linetrace = False
if profile or linetrace:
code.globalstate.use_utility_code(
UtilityCode.load_cached("Profile", "Profile.c"))
# Generate C code for header and body of function
code.enter_cfunc_scope()
code.return_from_error_cleanup_label = code.new_label()
# ----- Top-level constants used by this function
code.mark_pos(self.pos)
self.generate_cached_builtins_decls(lenv, code)
# ----- Function header
code.putln("")
if preprocessor_guard:
code.putln(preprocessor_guard)
with_pymethdef = (self.needs_assignment_synthesis(env, code) or
self.pymethdef_required)
if self.py_func:
self.py_func.generate_function_header(code,
with_pymethdef = with_pymethdef,
proto_only=True)
self.generate_function_header(code,
with_pymethdef = with_pymethdef)
# ----- Local variable declarations
# Find function scope
cenv = env
while cenv.is_py_class_scope or cenv.is_c_class_scope:
cenv = cenv.outer_scope
if self.needs_closure:
code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname))
code.putln(";")
elif self.needs_outer_scope:
if lenv.is_passthrough:
code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname))
code.putln(";")
code.put(cenv.scope_class.type.declaration_code(Naming.outer_scope_cname))
code.putln(";")
self.generate_argument_declarations(lenv, code)
for entry in lenv.var_entries:
if not (entry.in_closure or entry.is_arg):
code.put_var_declaration(entry)
# Initialize the return variable __pyx_r
init = ""
if not self.return_type.is_void:
if self.return_type.is_pyobject:
init = " = NULL"
elif self.return_type.is_memoryviewslice:
init = ' = ' + MemoryView.memslice_entry_init
code.putln(
"%s%s;" %
(self.return_type.declaration_code(Naming.retval_cname),
init))
tempvardecl_code = code.insertion_point()
self.generate_keyword_list(code)
if profile or linetrace:
code.put_trace_declarations()
# ----- Extern library function declarations
lenv.generate_library_function_declarations(code)
# ----- GIL acquisition
acquire_gil = self.acquire_gil
# See if we need to acquire the GIL for variable declarations, or for
# refnanny only
# Profiling or closures are not currently possible for cdef nogil
# functions, but check them anyway
have_object_args = (self.needs_closure or self.needs_outer_scope or
profile or linetrace)
for arg in lenv.arg_entries:
if arg.type.is_pyobject:
have_object_args = True
break
acquire_gil_for_var_decls_only = (
lenv.nogil and lenv.has_with_gil_block and
(have_object_args or lenv.buffer_entries))
acquire_gil_for_refnanny_only = (
lenv.nogil and lenv.has_with_gil_block and not
acquire_gil_for_var_decls_only)
use_refnanny = not lenv.nogil or lenv.has_with_gil_block
if acquire_gil or acquire_gil_for_var_decls_only:
code.put_ensure_gil()
elif lenv.nogil and lenv.has_with_gil_block:
code.declare_gilstate()
# ----- set up refnanny
if use_refnanny:
tempvardecl_code.put_declare_refcount_context()
code.put_setup_refcount_context(
self.entry.name, acquire_gil=acquire_gil_for_refnanny_only)
# ----- Automatic lead-ins for certain special functions
if is_getbuffer_slot:
self.getbuffer_init(code)
# ----- Create closure scope object
if self.needs_closure:
tp_slot = TypeSlots.ConstructorSlot("tp_new", '__new__')
slot_func_cname = TypeSlots.get_slot_function(lenv.scope_class.type.scope, tp_slot)
if not slot_func_cname:
slot_func_cname = '%s->tp_new' % lenv.scope_class.type.typeptr_cname
code.putln("%s = (%s)%s(%s, %s, NULL);" % (
Naming.cur_scope_cname,
lenv.scope_class.type.declaration_code(''),
slot_func_cname,
lenv.scope_class.type.typeptr_cname,
Naming.empty_tuple))
code.putln("if (unlikely(!%s)) {" % Naming.cur_scope_cname)
if is_getbuffer_slot:
self.getbuffer_error_cleanup(code)
if use_refnanny:
code.put_finish_refcount_context()
if acquire_gil or acquire_gil_for_var_decls_only:
code.put_release_ensured_gil()
# FIXME: what if the error return value is a Python value?
code.putln("return %s;" % self.error_value())
code.putln("}")
code.put_gotref(Naming.cur_scope_cname)
# Note that it is unsafe to decref the scope at this point.
if self.needs_outer_scope:
if self.is_cyfunction:
code.putln("%s = (%s) __Pyx_CyFunction_GetClosure(%s);" % (
outer_scope_cname,
cenv.scope_class.type.declaration_code(''),
Naming.self_cname))
else:
code.putln("%s = (%s) %s;" % (
outer_scope_cname,
cenv.scope_class.type.declaration_code(''),
Naming.self_cname))
if lenv.is_passthrough:
code.putln("%s = %s;" % (Naming.cur_scope_cname, outer_scope_cname))
elif self.needs_closure:
# inner closures own a reference to their outer parent
code.put_incref(outer_scope_cname, cenv.scope_class.type)
code.put_giveref(outer_scope_cname)
# ----- Trace function call
if profile or linetrace:
# this looks a bit late, but if we don't get here due to a
# fatal error before hand, it's not really worth tracing
code.put_trace_call(self.entry.name, self.pos)
code.funcstate.can_trace = True
# ----- Fetch arguments
self.generate_argument_parsing_code(env, code)
# If an argument is assigned to in the body, we must
# incref it to properly keep track of refcounts.
is_cdef = isinstance(self, CFuncDefNode)
for entry in lenv.arg_entries:
if entry.type.is_pyobject:
if ((acquire_gil or len(entry.cf_assignments) > 1) and
not entry.in_closure):
code.put_var_incref(entry)
# Note: defaults are always incref-ed. For def functions, we
# we aquire arguments from object converstion, so we have
# new references. If we are a cdef function, we need to
# incref our arguments
elif (is_cdef and entry.type.is_memoryviewslice and
len(entry.cf_assignments) > 1):
code.put_incref_memoryviewslice(entry.cname,
have_gil=not lenv.nogil)
for entry in lenv.var_entries:
if entry.is_arg and len(entry.cf_assignments) > 1:
code.put_var_incref(entry)
# ----- Initialise local buffer auxiliary variables
for entry in lenv.var_entries + lenv.arg_entries:
if entry.type.is_buffer and entry.buffer_aux.buflocal_nd_var.used:
Buffer.put_init_vars(entry, code)
# ----- Check and convert arguments
self.generate_argument_type_tests(code)
# ----- Acquire buffer arguments
for entry in lenv.arg_entries:
if entry.type.is_buffer:
Buffer.put_acquire_arg_buffer(entry, code, self.pos)
if acquire_gil_for_var_decls_only:
code.put_release_ensured_gil()
# -------------------------
# ----- Function body -----
# -------------------------
self.generate_function_body(env, code)
code.mark_pos(self.pos)
code.putln("")
code.putln("/* function exit code */")
# ----- Default return value
if not self.body.is_terminator:
if self.return_type.is_pyobject:
#if self.return_type.is_extension_type:
# lhs = "(PyObject *)%s" % Naming.retval_cname
#else:
lhs = Naming.retval_cname
code.put_init_to_py_none(lhs, self.return_type)
else:
val = self.return_type.default_value
if val:
code.putln("%s = %s;" % (Naming.retval_cname, val))
# ----- Error cleanup
if code.error_label in code.labels_used:
if not self.body.is_terminator:
code.put_goto(code.return_label)
code.put_label(code.error_label)
for cname, type in code.funcstate.all_managed_temps():
code.put_xdecref(cname, type, have_gil=not lenv.nogil)
# Clean up buffers -- this calls a Python function
# so need to save and restore error state
buffers_present = len(lenv.buffer_entries) > 0
memslice_entries = [e for e in lenv.entries.itervalues()
if e.type.is_memoryviewslice]
if buffers_present:
code.globalstate.use_utility_code(restore_exception_utility_code)
code.putln("{ PyObject *__pyx_type, *__pyx_value, *__pyx_tb;")
code.putln("__Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb);")
for entry in lenv.buffer_entries:
Buffer.put_release_buffer_code(code, entry)
#code.putln("%s = 0;" % entry.cname)
code.putln("__Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);}")
if self.return_type.is_memoryviewslice:
MemoryView.put_init_entry(Naming.retval_cname, code)
err_val = Naming.retval_cname
else:
err_val = self.error_value()
exc_check = self.caller_will_check_exceptions()
if err_val is not None or exc_check:
# TODO: Fix exception tracing (though currently unused by cProfile).
# code.globalstate.use_utility_code(get_exception_tuple_utility_code)
# code.put_trace_exception()
if lenv.nogil and not lenv.has_with_gil_block:
code.putln("{")
code.put_ensure_gil()
code.put_add_traceback(self.entry.qualified_name)
if lenv.nogil and not lenv.has_with_gil_block:
code.put_release_ensured_gil()
code.putln("}")
else:
warning(self.entry.pos,
"Unraisable exception in function '%s'." %
self.entry.qualified_name, 0)
code.put_unraisable(self.entry.qualified_name)
default_retval = self.return_type.default_value
if err_val is None and default_retval:
err_val = default_retval
if err_val is not None:
code.putln("%s = %s;" % (Naming.retval_cname, err_val))
if is_getbuffer_slot:
self.getbuffer_error_cleanup(code)
# If we are using the non-error cleanup section we should
# jump past it if we have an error. The if-test below determine
# whether this section is used.
if buffers_present or is_getbuffer_slot or self.return_type.is_memoryviewslice:
code.put_goto(code.return_from_error_cleanup_label)
# ----- Non-error return cleanup
code.put_label(code.return_label)
for entry in lenv.buffer_entries:
if entry.used:
Buffer.put_release_buffer_code(code, entry)
if is_getbuffer_slot:
self.getbuffer_normal_cleanup(code)
if self.return_type.is_memoryviewslice:
# See if our return value is uninitialized on non-error return
# import MemoryView
# MemoryView.err_if_nogil_initialized_check(self.pos, env)
cond = code.unlikely(self.return_type.error_condition(
Naming.retval_cname))
code.putln(
'if (%s) {' % cond)
if env.nogil:
code.put_ensure_gil()
code.putln(
'PyErr_SetString('
'PyExc_TypeError,'
'"Memoryview return value is not initialized");')
if env.nogil:
code.put_release_ensured_gil()
code.putln(
'}')
# ----- Return cleanup for both error and no-error return
code.put_label(code.return_from_error_cleanup_label)
for entry in lenv.var_entries:
if not entry.used or entry.in_closure:
continue
if entry.type.is_memoryviewslice:
code.put_xdecref_memoryviewslice(entry.cname,
have_gil=not lenv.nogil)
elif entry.type.is_pyobject:
if not entry.is_arg or len(entry.cf_assignments) > 1:
code.put_var_decref(entry)
# Decref any increfed args
for entry in lenv.arg_entries:
if entry.type.is_pyobject:
if ((acquire_gil or len(entry.cf_assignments) > 1) and
not entry.in_closure):
code.put_var_decref(entry)
elif (entry.type.is_memoryviewslice and
(not is_cdef or len(entry.cf_assignments) > 1)):
# decref slices of def functions and acquired slices from cdef
# functions, but not borrowed slices from cdef functions.
code.put_xdecref_memoryviewslice(entry.cname,
have_gil=not lenv.nogil)
if self.needs_closure:
code.put_decref(Naming.cur_scope_cname, lenv.scope_class.type)
# ----- Return
# This code is duplicated in ModuleNode.generate_module_init_func
if not lenv.nogil:
default_retval = self.return_type.default_value
err_val = self.error_value()
if err_val is None and default_retval:
err_val = default_retval # FIXME: why is err_val not used?
if self.return_type.is_pyobject:
code.put_xgiveref(self.return_type.as_pyobject(Naming.retval_cname))
if self.entry.is_special and self.entry.name == "__hash__":
# Returning -1 for __hash__ is supposed to signal an error
# We do as Python instances and coerce -1 into -2.
code.putln("if (unlikely(%s == -1) && !PyErr_Occurred()) %s = -2;" % (
Naming.retval_cname, Naming.retval_cname))
if profile or linetrace:
code.funcstate.can_trace = False
if self.return_type.is_pyobject:
code.put_trace_return(Naming.retval_cname)
else:
code.put_trace_return("Py_None")
if not lenv.nogil:
# GIL holding function
code.put_finish_refcount_context()
if acquire_gil or (lenv.nogil and lenv.has_with_gil_block):
# release the GIL (note that with-gil blocks acquire it on exit in their EnsureGILNode)
code.put_release_ensured_gil()
if not self.return_type.is_void:
code.putln("return %s;" % Naming.retval_cname)
code.putln("}")
if preprocessor_guard:
code.putln("#endif /*!(%s)*/" % preprocessor_guard)
# ----- Go back and insert temp variable declarations
tempvardecl_code.put_temp_declarations(code.funcstate)
# ----- Python version
code.exit_cfunc_scope()
if self.py_func:
self.py_func.generate_function_definitions(env, code)
self.generate_wrapper_functions(code)
def declare_argument(self, env, arg):
if arg.type.is_void:
error(arg.pos, "Invalid use of 'void'")
elif not arg.type.is_complete() and not (arg.type.is_array or arg.type.is_memoryviewslice):
error(arg.pos,
"Argument type '%s' is incomplete" % arg.type)
return env.declare_arg(arg.name, arg.type, arg.pos)
def generate_arg_type_test(self, arg, code):
# Generate type test for one argument.
if arg.type.typeobj_is_available():
code.globalstate.use_utility_code(
UtilityCode.load_cached("ArgTypeTest", "FunctionArguments.c"))
typeptr_cname = arg.type.typeptr_cname
arg_code = "((PyObject *)%s)" % arg.entry.cname
code.putln(
'if (unlikely(!__Pyx_ArgTypeTest(%s, %s, %d, "%s", %s))) %s' % (
arg_code,
typeptr_cname,
arg.accept_none,
arg.name,
arg.type.is_builtin_type,
code.error_goto(arg.pos)))
else:
error(arg.pos, "Cannot test type of extern C class "
"without type object name specification")
def generate_arg_none_check(self, arg, code):
# Generate None check for one argument.
if arg.type.is_memoryviewslice:
cname = "%s.memview" % arg.entry.cname
else:
cname = arg.entry.cname
code.putln('if (unlikely(((PyObject *)%s) == Py_None)) {' % cname)
code.putln('''PyErr_Format(PyExc_TypeError, "Argument '%%.%ds' must not be None", "%s"); %s''' % (
max(200, len(arg.name)), arg.name,
code.error_goto(arg.pos)))
code.putln('}')
def generate_wrapper_functions(self, code):
pass
def generate_execution_code(self, code):
# Evaluate and store argument default values
for arg in self.args:
if not arg.is_dynamic:
arg.generate_assignment_code(code)
#
# Special code for the __getbuffer__ function
#
def getbuffer_init(self, code):
info = self.local_scope.arg_entries[1].cname
# Python 3.0 betas have a bug in memoryview which makes it call
# getbuffer with a NULL parameter. For now we work around this;
# the following block should be removed when this bug is fixed.
code.putln("if (%s != NULL) {" % info)
code.putln("%s->obj = Py_None; __Pyx_INCREF(Py_None);" % info)
code.put_giveref("%s->obj" % info) # Do not refnanny object within structs
code.putln("}")
def getbuffer_error_cleanup(self, code):
info = self.local_scope.arg_entries[1].cname
code.putln("if (%s != NULL && %s->obj != NULL) {"
% (info, info))
code.put_gotref("%s->obj" % info)
code.putln("__Pyx_DECREF(%s->obj); %s->obj = NULL;"
% (info, info))
code.putln("}")
def getbuffer_normal_cleanup(self, code):
info = self.local_scope.arg_entries[1].cname
code.putln("if (%s != NULL && %s->obj == Py_None) {" % (info, info))
code.put_gotref("Py_None")
code.putln("__Pyx_DECREF(Py_None); %s->obj = NULL;" % info)
code.putln("}")
def get_preprocessor_guard(self):
if not self.entry.is_special:
return None
name = self.entry.name
slot = TypeSlots.method_name_to_slot.get(name)
if not slot:
return None
if name == '__long__' and not self.entry.scope.lookup_here('__int__'):
return None
if name in ("__getbuffer__", "__releasebuffer__") and self.entry.scope.is_c_class_scope:
return None
return slot.preprocessor_guard_code()
class CFuncDefNode(FuncDefNode):
# C function definition.
#
# modifiers ['inline']
# visibility 'private' or 'public' or 'extern'
# base_type CBaseTypeNode
# declarator CDeclaratorNode
# cfunc_declarator the CFuncDeclarator of this function
# (this is also available through declarator or a
# base thereof)
# body StatListNode
# api boolean
# decorators [DecoratorNode] list of decorators
#
# with_gil boolean Acquire GIL around body
# type CFuncType
# py_func wrapper for calling from Python
# overridable whether or not this is a cpdef function
# inline_in_pxd whether this is an inline function in a pxd file
# template_declaration String or None Used for c++ class methods
# is_const_method whether this is a const method
child_attrs = ["base_type", "declarator", "body", "py_func"]
inline_in_pxd = False
decorators = None
directive_locals = None
directive_returns = None
override = None
template_declaration = None
is_const_method = False
def unqualified_name(self):
return self.entry.name
def analyse_declarations(self, env):
if self.directive_locals is None:
self.directive_locals = {}
self.directive_locals.update(env.directives['locals'])
if self.directive_returns is not None:
base_type = self.directive_returns.analyse_as_type(env)
if base_type is None:
error(self.directive_returns.pos, "Not a type")
base_type = PyrexTypes.error_type
else:
base_type = self.base_type.analyse(env)
# The 2 here is because we need both function and argument names.
if isinstance(self.declarator, CFuncDeclaratorNode):
name_declarator, type = self.declarator.analyse(base_type, env,
nonempty = 2 * (self.body is not None),
directive_locals = self.directive_locals)
else:
name_declarator, type = self.declarator.analyse(base_type, env, nonempty = 2 * (self.body is not None))
if not type.is_cfunction:
error(self.pos,
"Suite attached to non-function declaration")
# Remember the actual type according to the function header
# written here, because the type in the symbol table entry
# may be different if we're overriding a C method inherited
# from the base type of an extension type.
self.type = type
type.is_overridable = self.overridable
declarator = self.declarator
while not hasattr(declarator, 'args'):
declarator = declarator.base
self.cfunc_declarator = declarator
self.args = declarator.args
opt_arg_count = self.cfunc_declarator.optional_arg_count
if (self.visibility == 'public' or self.api) and opt_arg_count:
error(self.cfunc_declarator.pos,
"Function with optional arguments may not be declared "
"public or api")
if (type.exception_check == '+' and self.visibility != 'extern'):
warning(self.cfunc_declarator.pos,
"Only extern functions can throw C++ exceptions.")
for formal_arg, type_arg in zip(self.args, type.args):
self.align_argument_type(env, type_arg)
formal_arg.type = type_arg.type
formal_arg.name = type_arg.name
formal_arg.cname = type_arg.cname
self._validate_type_visibility(type_arg.type, type_arg.pos, env)
if type_arg.type.is_fused:
self.has_fused_arguments = True
if type_arg.type.is_buffer and 'inline' in self.modifiers:
warning(formal_arg.pos, "Buffer unpacking not optimized away.", 1)
if type_arg.type.is_buffer:
if self.type.nogil:
error(formal_arg.pos,
"Buffer may not be acquired without the GIL. "
"Consider using memoryview slices instead.")
elif 'inline' in self.modifiers:
warning(formal_arg.pos, "Buffer unpacking not optimized away.", 1)
self._validate_type_visibility(type.return_type, self.pos, env)
name = name_declarator.name
cname = name_declarator.cname
type.is_const_method = self.is_const_method
self.entry = env.declare_cfunction(
name, type, self.pos,
cname = cname, visibility = self.visibility, api = self.api,
defining = self.body is not None, modifiers = self.modifiers)
self.entry.inline_func_in_pxd = self.inline_in_pxd
self.return_type = type.return_type
if self.return_type.is_array and self.visibility != 'extern':
error(self.pos,
"Function cannot return an array")
if self.return_type.is_cpp_class:
self.return_type.check_nullary_constructor(self.pos, "used as a return value")
if self.overridable and not env.is_module_scope:
if len(self.args) < 1 or not self.args[0].type.is_pyobject:
# An error will be produced in the cdef function
self.overridable = False
self.declare_cpdef_wrapper(env)
self.create_local_scope(env)
def declare_cpdef_wrapper(self, env):
if self.overridable:
name = self.entry.name
py_func_body = self.call_self_node(is_module_scope = env.is_module_scope)
self.py_func = DefNode(pos = self.pos,
name = self.entry.name,
args = self.args,
star_arg = None,
starstar_arg = None,
doc = self.doc,
body = py_func_body,
is_wrapper = 1)
self.py_func.is_module_scope = env.is_module_scope
self.py_func.analyse_declarations(env)
self.entry.as_variable = self.py_func.entry
self.entry.used = self.entry.as_variable.used = True
# Reset scope entry the above cfunction
env.entries[name] = self.entry
if (not self.entry.is_final_cmethod and
(not env.is_module_scope or Options.lookup_module_cpdef)):
self.override = OverrideCheckNode(self.pos, py_func = self.py_func)
self.body = StatListNode(self.pos, stats=[self.override, self.body])
def _validate_type_visibility(self, type, pos, env):
"""
Ensure that types used in cdef functions are public or api, or
defined in a C header.
"""
public_or_api = (self.visibility == 'public' or self.api)
entry = getattr(type, 'entry', None)
if public_or_api and entry and env.is_module_scope:
if not (entry.visibility in ('public', 'extern') or
entry.api or entry.in_cinclude):
error(pos, "Function declared public or api may not have "
"private types")
def call_self_node(self, omit_optional_args=0, is_module_scope=0):
import ExprNodes
args = self.type.args
if omit_optional_args:
args = args[:len(args) - self.type.optional_arg_count]
arg_names = [arg.name for arg in args]
if is_module_scope:
cfunc = ExprNodes.NameNode(self.pos, name=self.entry.name)
else:
self_arg = ExprNodes.NameNode(self.pos, name=arg_names[0])
cfunc = ExprNodes.AttributeNode(self.pos, obj=self_arg, attribute=self.entry.name)
skip_dispatch = not is_module_scope or Options.lookup_module_cpdef
c_call = ExprNodes.SimpleCallNode(self.pos, function=cfunc, args=[ExprNodes.NameNode(self.pos, name=n) for n in arg_names[1-is_module_scope:]], wrapper_call=skip_dispatch)
return ReturnStatNode(pos=self.pos, return_type=PyrexTypes.py_object_type, value=c_call)
def declare_arguments(self, env):
for arg in self.type.args:
if not arg.name:
error(arg.pos, "Missing argument name")
self.declare_argument(env, arg)
def need_gil_acquisition(self, lenv):
return self.type.with_gil
def nogil_check(self, env):
type = self.type
with_gil = type.with_gil
if type.nogil and not with_gil:
if type.return_type.is_pyobject:
error(self.pos,
"Function with Python return type cannot be declared nogil")
for entry in self.local_scope.var_entries:
if entry.type.is_pyobject and not entry.in_with_gil_block:
error(self.pos, "Function declared nogil has Python locals or temporaries")
def analyse_expressions(self, env):
self.local_scope.directives = env.directives
if self.py_func is not None:
# this will also analyse the default values
self.py_func = self.py_func.analyse_expressions(env)
else:
self.analyse_default_values(env)
self.acquire_gil = self.need_gil_acquisition(self.local_scope)
return self
def needs_assignment_synthesis(self, env, code=None):
return False
def generate_function_header(self, code, with_pymethdef, with_opt_args = 1, with_dispatch = 1, cname = None):
scope = self.local_scope
arg_decls = []
type = self.type
for arg in type.args[:len(type.args)-type.optional_arg_count]:
arg_decl = arg.declaration_code()
entry = scope.lookup(arg.name)
if not entry.cf_used:
arg_decl = 'CYTHON_UNUSED %s' % arg_decl
arg_decls.append(arg_decl)
if with_dispatch and self.overridable:
dispatch_arg = PyrexTypes.c_int_type.declaration_code(
Naming.skip_dispatch_cname)
if self.override:
arg_decls.append(dispatch_arg)
else:
arg_decls.append('CYTHON_UNUSED %s' % dispatch_arg)
if type.optional_arg_count and with_opt_args:
arg_decls.append(type.op_arg_struct.declaration_code(Naming.optional_args_cname))
if type.has_varargs:
arg_decls.append("...")
if not arg_decls:
arg_decls = ["void"]
if cname is None:
cname = self.entry.func_cname
entity = type.function_header_code(cname, ', '.join(arg_decls))
if self.entry.visibility == 'private' and '::' not in cname:
storage_class = "static "
else:
storage_class = ""
dll_linkage = None
modifiers = code.build_function_modifiers(self.entry.func_modifiers)
header = self.return_type.declaration_code(entity, dll_linkage=dll_linkage)
#print (storage_class, modifiers, header)
if self.template_declaration:
code.putln(self.template_declaration)
code.putln("%s%s%s {" % (storage_class, modifiers, header))
def generate_argument_declarations(self, env, code):
scope = self.local_scope
for arg in self.args:
if arg.default:
entry = scope.lookup(arg.name)
if self.override or entry.cf_used:
result = arg.calculate_default_value_code(code)
code.putln('%s = %s;' % (
arg.type.declaration_code(arg.cname), result))
def generate_keyword_list(self, code):
pass
def generate_argument_parsing_code(self, env, code):
i = 0
used = 0
if self.type.optional_arg_count:
scope = self.local_scope
code.putln('if (%s) {' % Naming.optional_args_cname)
for arg in self.args:
if arg.default:
entry = scope.lookup(arg.name)
if self.override or entry.cf_used:
code.putln('if (%s->%sn > %s) {' %
(Naming.optional_args_cname,
Naming.pyrex_prefix, i))
declarator = arg.declarator
while not hasattr(declarator, 'name'):
declarator = declarator.base
code.putln('%s = %s->%s;' %
(arg.cname, Naming.optional_args_cname,
self.type.opt_arg_cname(declarator.name)))
used += 1
i += 1
for _ in range(used):
code.putln('}')
code.putln('}')
def generate_argument_conversion_code(self, code):
pass
def generate_argument_type_tests(self, code):
# Generate type tests for args whose type in a parent
# class is a supertype of the declared type.
for arg in self.type.args:
if arg.needs_type_test:
self.generate_arg_type_test(arg, code)
elif arg.type.is_pyobject and not arg.accept_none:
self.generate_arg_none_check(arg, code)
def error_value(self):
if self.return_type.is_pyobject:
return "0"
else:
#return None
return self.entry.type.exception_value
def caller_will_check_exceptions(self):
return self.entry.type.exception_check
def generate_wrapper_functions(self, code):
# If the C signature of a function has changed, we need to generate
# wrappers to put in the slots here.
k = 0
entry = self.entry
func_type = entry.type
while entry.prev_entry is not None:
k += 1
entry = entry.prev_entry
entry.func_cname = "%s%swrap_%s" % (self.entry.func_cname, Naming.pyrex_prefix, k)
code.putln()
self.generate_function_header(code,
0,
with_dispatch = entry.type.is_overridable,
with_opt_args = entry.type.optional_arg_count,
cname = entry.func_cname)
if not self.return_type.is_void:
code.put('return ')
args = self.type.args
arglist = [arg.cname for arg in args[:len(args)-self.type.optional_arg_count]]
if entry.type.is_overridable:
arglist.append(Naming.skip_dispatch_cname)
elif func_type.is_overridable:
arglist.append('0')
if entry.type.optional_arg_count:
arglist.append(Naming.optional_args_cname)
elif func_type.optional_arg_count:
arglist.append('NULL')
code.putln('%s(%s);' % (self.entry.func_cname, ', '.join(arglist)))
code.putln('}')
class PyArgDeclNode(Node):
# Argument which must be a Python object (used
# for * and ** arguments).
#
# name string
# entry Symtab.Entry
# annotation ExprNode or None Py3 argument annotation
child_attrs = []
is_self_arg = False
is_type_arg = False
def generate_function_definitions(self, env, code):
self.entry.generate_function_definitions(env, code)
class DecoratorNode(Node):
# A decorator
#
# decorator NameNode or CallNode or AttributeNode
child_attrs = ['decorator']
class DefNode(FuncDefNode):
# A Python function definition.
#
# name string the Python name of the function
# lambda_name string the internal name of a lambda 'function'
# decorators [DecoratorNode] list of decorators
# args [CArgDeclNode] formal arguments
# doc EncodedString or None
# body StatListNode
# return_type_annotation
# ExprNode or None the Py3 return type annotation
#
# The following subnode is constructed internally
# when the def statement is inside a Python class definition.
#
# fused_py_func DefNode The original fused cpdef DefNode
# (in case this is a specialization)
# specialized_cpdefs [DefNode] list of specialized cpdef DefNodes
# py_cfunc_node PyCFunctionNode/InnerFunctionNode The PyCFunction to create and assign
#
# decorator_indirection IndirectionNode Used to remove __Pyx_Method_ClassMethod for fused functions
child_attrs = ["args", "star_arg", "starstar_arg", "body", "decorators"]
lambda_name = None
reqd_kw_flags_cname = "0"
is_wrapper = 0
no_assignment_synthesis = 0
decorators = None
return_type_annotation = None
entry = None
acquire_gil = 0
self_in_stararg = 0
py_cfunc_node = None
requires_classobj = False
defaults_struct = None # Dynamic kwrds structure name
doc = None
fused_py_func = False
specialized_cpdefs = None
py_wrapper = None
py_wrapper_required = True
func_cname = None
defaults_getter = None
def __init__(self, pos, **kwds):
FuncDefNode.__init__(self, pos, **kwds)
k = rk = r = 0
for arg in self.args:
if arg.kw_only:
k += 1
if not arg.default:
rk += 1
if not arg.default:
r += 1
self.num_kwonly_args = k
self.num_required_kw_args = rk
self.num_required_args = r
def as_cfunction(self, cfunc=None, scope=None, overridable=True, returns=None):
if self.star_arg:
error(self.star_arg.pos, "cdef function cannot have star argument")
if self.starstar_arg:
error(self.starstar_arg.pos, "cdef function cannot have starstar argument")
if cfunc is None:
cfunc_args = []
for formal_arg in self.args:
name_declarator, type = formal_arg.analyse(scope, nonempty=1)
cfunc_args.append(PyrexTypes.CFuncTypeArg(name = name_declarator.name,
cname = None,
type = py_object_type,
pos = formal_arg.pos))
cfunc_type = PyrexTypes.CFuncType(return_type = py_object_type,
args = cfunc_args,
has_varargs = False,
exception_value = None,
exception_check = False,
nogil = False,
with_gil = False,
is_overridable = overridable)
cfunc = CVarDefNode(self.pos, type=cfunc_type)
else:
if scope is None:
scope = cfunc.scope
cfunc_type = cfunc.type
if len(self.args) != len(cfunc_type.args) or cfunc_type.has_varargs:
error(self.pos, "wrong number of arguments")
error(cfunc.pos, "previous declaration here")
for i, (formal_arg, type_arg) in enumerate(zip(self.args, cfunc_type.args)):
name_declarator, type = formal_arg.analyse(scope, nonempty=1,
is_self_arg = (i == 0 and scope.is_c_class_scope))
if type is None or type is PyrexTypes.py_object_type:
formal_arg.type = type_arg.type
formal_arg.name_declarator = name_declarator
import ExprNodes
if cfunc_type.exception_value is None:
exception_value = None
else:
exception_value = ExprNodes.ConstNode(self.pos, value=cfunc_type.exception_value, type=cfunc_type.return_type)
declarator = CFuncDeclaratorNode(self.pos,
base = CNameDeclaratorNode(self.pos, name=self.name, cname=None),
args = self.args,
has_varargs = False,
exception_check = cfunc_type.exception_check,
exception_value = exception_value,
with_gil = cfunc_type.with_gil,
nogil = cfunc_type.nogil)
return CFuncDefNode(self.pos,
modifiers = [],
base_type = CAnalysedBaseTypeNode(self.pos, type=cfunc_type.return_type),
declarator = declarator,
body = self.body,
doc = self.doc,
overridable = cfunc_type.is_overridable,
type = cfunc_type,
with_gil = cfunc_type.with_gil,
nogil = cfunc_type.nogil,
visibility = 'private',
api = False,
directive_locals = getattr(cfunc, 'directive_locals', {}),
directive_returns = returns)
def is_cdef_func_compatible(self):
"""Determines if the function's signature is compatible with a
cdef function. This can be used before calling
.as_cfunction() to see if that will be successful.
"""
if self.needs_closure:
return False
if self.star_arg or self.starstar_arg:
return False
return True
def analyse_declarations(self, env):
self.is_classmethod = self.is_staticmethod = False
if self.decorators:
for decorator in self.decorators:
func = decorator.decorator
if func.is_name:
self.is_classmethod |= func.name == 'classmethod'
self.is_staticmethod |= func.name == 'staticmethod'
if self.is_classmethod and env.lookup_here('classmethod'):
# classmethod() was overridden - not much we can do here ...
self.is_classmethod = False
if self.is_staticmethod and env.lookup_here('staticmethod'):
# staticmethod() was overridden - not much we can do here ...
self.is_staticmethod = False
if self.name == '__new__' and env.is_py_class_scope:
self.is_staticmethod = 1
self.analyse_argument_types(env)
if self.name == '<lambda>':
self.declare_lambda_function(env)
else:
self.declare_pyfunction(env)
self.analyse_signature(env)
self.return_type = self.entry.signature.return_type()
self.create_local_scope(env)
self.py_wrapper = DefNodeWrapper(
self.pos,
target=self,
name=self.entry.name,
args=self.args,
star_arg=self.star_arg,
starstar_arg=self.starstar_arg,
return_type=self.return_type)
self.py_wrapper.analyse_declarations(env)
def analyse_argument_types(self, env):
self.directive_locals = env.directives['locals']
allow_none_for_extension_args = env.directives['allow_none_for_extension_args']
f2s = env.fused_to_specific
env.fused_to_specific = None
for arg in self.args:
if hasattr(arg, 'name'):
name_declarator = None
else:
base_type = arg.base_type.analyse(env)
name_declarator, type = \
arg.declarator.analyse(base_type, env)
arg.name = name_declarator.name
arg.type = type
if type.is_fused:
self.has_fused_arguments = True
self.align_argument_type(env, arg)
if name_declarator and name_declarator.cname:
error(self.pos,
"Python function argument cannot have C name specification")
arg.type = arg.type.as_argument_type()
arg.hdr_type = None
arg.needs_conversion = 0
arg.needs_type_test = 0
arg.is_generic = 1
if arg.type.is_pyobject or arg.type.is_buffer or arg.type.is_memoryviewslice:
if arg.or_none:
arg.accept_none = True
elif arg.not_none:
arg.accept_none = False
elif (arg.type.is_extension_type or arg.type.is_builtin_type
or arg.type.is_buffer or arg.type.is_memoryviewslice):
if arg.default and arg.default.constant_result is None:
# special case: def func(MyType obj = None)
arg.accept_none = True
else:
# default depends on compiler directive
arg.accept_none = allow_none_for_extension_args
else:
# probably just a plain 'object'
arg.accept_none = True
else:
arg.accept_none = True # won't be used, but must be there
if arg.not_none:
error(arg.pos, "Only Python type arguments can have 'not None'")
if arg.or_none:
error(arg.pos, "Only Python type arguments can have 'or None'")
env.fused_to_specific = f2s
def analyse_signature(self, env):
if self.entry.is_special:
if self.decorators:
error(self.pos, "special functions of cdef classes cannot have decorators")
self.entry.trivial_signature = len(self.args) == 1 and not (self.star_arg or self.starstar_arg)
elif not env.directives['always_allow_keywords'] and not (self.star_arg or self.starstar_arg):
# Use the simpler calling signature for zero- and one-argument functions.
if self.entry.signature is TypeSlots.pyfunction_signature:
if len(self.args) == 0:
self.entry.signature = TypeSlots.pyfunction_noargs
elif len(self.args) == 1:
if self.args[0].default is None and not self.args[0].kw_only:
self.entry.signature = TypeSlots.pyfunction_onearg
elif self.entry.signature is TypeSlots.pymethod_signature:
if len(self.args) == 1:
self.entry.signature = TypeSlots.unaryfunc
elif len(self.args) == 2:
if self.args[1].default is None and not self.args[1].kw_only:
self.entry.signature = TypeSlots.ibinaryfunc
sig = self.entry.signature
nfixed = sig.num_fixed_args()
if sig is TypeSlots.pymethod_signature and nfixed == 1 \
and len(self.args) == 0 and self.star_arg:
# this is the only case where a diverging number of
# arguments is not an error - when we have no explicit
# 'self' parameter as in method(*args)
sig = self.entry.signature = TypeSlots.pyfunction_signature # self is not 'really' used
self.self_in_stararg = 1
nfixed = 0
if self.is_staticmethod and env.is_c_class_scope:
nfixed = 0
self.self_in_stararg = True # FIXME: why for staticmethods?
self.entry.signature = sig = copy.copy(sig)
sig.fixed_arg_format = "*"
sig.is_staticmethod = True
sig.has_generic_args = True
if ((self.is_classmethod or self.is_staticmethod) and
self.has_fused_arguments and env.is_c_class_scope):
del self.decorator_indirection.stats[:]
for i in range(min(nfixed, len(self.args))):
arg = self.args[i]
arg.is_generic = 0
if sig.is_self_arg(i) and not self.is_staticmethod:
if self.is_classmethod:
arg.is_type_arg = 1
arg.hdr_type = arg.type = Builtin.type_type
else:
arg.is_self_arg = 1
arg.hdr_type = arg.type = env.parent_type
arg.needs_conversion = 0
else:
arg.hdr_type = sig.fixed_arg_type(i)
if not arg.type.same_as(arg.hdr_type):
if arg.hdr_type.is_pyobject and arg.type.is_pyobject:
arg.needs_type_test = 1
else:
arg.needs_conversion = 1
if arg.needs_conversion:
arg.hdr_cname = Naming.arg_prefix + arg.name
else:
arg.hdr_cname = Naming.var_prefix + arg.name
if nfixed > len(self.args):
self.bad_signature()
return
elif nfixed < len(self.args):
if not sig.has_generic_args:
self.bad_signature()
for arg in self.args:
if arg.is_generic and \
(arg.type.is_extension_type or arg.type.is_builtin_type):
arg.needs_type_test = 1
def bad_signature(self):
sig = self.entry.signature
expected_str = "%d" % sig.num_fixed_args()
if sig.has_generic_args:
expected_str += " or more"
name = self.name
if name.startswith("__") and name.endswith("__"):
desc = "Special method"
else:
desc = "Method"
error(self.pos,
"%s %s has wrong number of arguments "
"(%d declared, %s expected)" % (
desc, self.name, len(self.args), expected_str))
def declare_pyfunction(self, env):
#print "DefNode.declare_pyfunction:", self.name, "in", env ###
name = self.name
entry = env.lookup_here(name)
if entry:
if entry.is_final_cmethod and not env.parent_type.is_final_type:
error(self.pos, "Only final types can have final Python (def/cpdef) methods")
if (entry.type.is_cfunction and not entry.is_builtin_cmethod
and not self.is_wrapper):
warning(self.pos, "Overriding cdef method with def method.", 5)
entry = env.declare_pyfunction(name, self.pos, allow_redefine=not self.is_wrapper)
self.entry = entry
prefix = env.next_id(env.scope_prefix)
self.entry.pyfunc_cname = Naming.pyfunc_prefix + prefix + name
if Options.docstrings:
entry.doc = embed_position(self.pos, self.doc)
entry.doc_cname = Naming.funcdoc_prefix + prefix + name
if entry.is_special:
if entry.name in TypeSlots.invisible or not entry.doc or (entry.name in '__getattr__' and env.directives['fast_getattr']):
entry.wrapperbase_cname = None
else:
entry.wrapperbase_cname = Naming.wrapperbase_prefix + prefix + name
else:
entry.doc = None
def declare_lambda_function(self, env):
entry = env.declare_lambda_function(self.lambda_name, self.pos)
entry.doc = None
self.entry = entry
self.entry.pyfunc_cname = entry.cname
def declare_arguments(self, env):
for arg in self.args:
if not arg.name:
error(arg.pos, "Missing argument name")
if arg.needs_conversion:
arg.entry = env.declare_var(arg.name, arg.type, arg.pos)
if arg.type.is_pyobject:
arg.entry.init = "0"
else:
arg.entry = self.declare_argument(env, arg)
arg.entry.is_arg = 1
arg.entry.used = 1
arg.entry.is_self_arg = arg.is_self_arg
self.declare_python_arg(env, self.star_arg)
self.declare_python_arg(env, self.starstar_arg)
def declare_python_arg(self, env, arg):
if arg:
if env.directives['infer_types'] != False:
type = PyrexTypes.unspecified_type
else:
type = py_object_type
entry = env.declare_var(arg.name, type, arg.pos)
entry.is_arg = 1
entry.used = 1
entry.init = "0"
entry.xdecref_cleanup = 1
arg.entry = entry
def analyse_expressions(self, env):
self.local_scope.directives = env.directives
self.analyse_default_values(env)
if not self.needs_assignment_synthesis(env) and self.decorators:
for decorator in self.decorators[::-1]:
decorator.decorator = decorator.decorator.analyse_expressions(env)
self.py_wrapper.prepare_argument_coercion(env)
return self
def needs_assignment_synthesis(self, env, code=None):
if self.is_wrapper or self.specialized_cpdefs or self.entry.is_fused_specialized:
return False
if self.is_staticmethod:
return True
if self.no_assignment_synthesis:
return False
# Should enable for module level as well, that will require more testing...
if self.entry.is_anonymous:
return True
if env.is_module_scope:
if code is None:
return env.directives['binding']
else:
return code.globalstate.directives['binding']
return env.is_py_class_scope or env.is_closure_scope
def error_value(self):
return self.entry.signature.error_value
def caller_will_check_exceptions(self):
return self.entry.signature.exception_check
def generate_function_definitions(self, env, code):
if self.defaults_getter:
self.defaults_getter.generate_function_definitions(env, code)
# Before closure cnames are mangled
if self.py_wrapper_required:
# func_cname might be modified by @cname
self.py_wrapper.func_cname = self.entry.func_cname
self.py_wrapper.generate_function_definitions(env, code)
FuncDefNode.generate_function_definitions(self, env, code)
def generate_function_header(self, code, with_pymethdef, proto_only=0):
if proto_only:
if self.py_wrapper_required:
self.py_wrapper.generate_function_header(
code, with_pymethdef, True)
return
arg_code_list = []
if self.entry.signature.has_dummy_arg:
self_arg = 'PyObject *%s' % Naming.self_cname
if not self.needs_outer_scope:
self_arg = 'CYTHON_UNUSED ' + self_arg
arg_code_list.append(self_arg)
def arg_decl_code(arg):
entry = arg.entry
if entry.in_closure:
cname = entry.original_cname
else:
cname = entry.cname
decl = entry.type.declaration_code(cname)
if not entry.cf_used:
decl = 'CYTHON_UNUSED ' + decl
return decl
for arg in self.args:
arg_code_list.append(arg_decl_code(arg))
if self.star_arg:
arg_code_list.append(arg_decl_code(self.star_arg))
if self.starstar_arg:
arg_code_list.append(arg_decl_code(self.starstar_arg))
arg_code = ', '.join(arg_code_list)
dc = self.return_type.declaration_code(self.entry.pyfunc_cname)
decls_code = code.globalstate['decls']
preprocessor_guard = self.get_preprocessor_guard()
if preprocessor_guard:
decls_code.putln(preprocessor_guard)
decls_code.putln(
"static %s(%s); /* proto */" % (dc, arg_code))
if preprocessor_guard:
decls_code.putln("#endif")
code.putln("static %s(%s) {" % (dc, arg_code))
def generate_argument_declarations(self, env, code):
pass
def generate_keyword_list(self, code):
pass
def generate_argument_parsing_code(self, env, code):
# Move arguments into closure if required
def put_into_closure(entry):
if entry.in_closure:
code.putln('%s = %s;' % (entry.cname, entry.original_cname))
code.put_var_incref(entry)
code.put_var_giveref(entry)
for arg in self.args:
put_into_closure(arg.entry)
for arg in self.star_arg, self.starstar_arg:
if arg:
put_into_closure(arg.entry)
def generate_argument_type_tests(self, code):
pass
class DefNodeWrapper(FuncDefNode):
# DefNode python wrapper code generator
defnode = None
target = None # Target DefNode
def __init__(self, *args, **kwargs):
FuncDefNode.__init__(self, *args, **kwargs)
self.num_kwonly_args = self.target.num_kwonly_args
self.num_required_kw_args = self.target.num_required_kw_args
self.num_required_args = self.target.num_required_args
self.self_in_stararg = self.target.self_in_stararg
self.signature = None
def analyse_declarations(self, env):
target_entry = self.target.entry
name = self.name
prefix = env.next_id(env.scope_prefix)
target_entry.func_cname = Naming.pywrap_prefix + prefix + name
target_entry.pymethdef_cname = Naming.pymethdef_prefix + prefix + name
self.signature = target_entry.signature
def prepare_argument_coercion(self, env):
# This is only really required for Cython utility code at this time,
# everything else can be done during code generation. But we expand
# all utility code here, simply because we cannot easily distinguish
# different code types.
for arg in self.args:
if not arg.type.is_pyobject:
if not arg.type.create_from_py_utility_code(env):
pass # will fail later
elif arg.hdr_type and not arg.hdr_type.is_pyobject:
if not arg.hdr_type.create_to_py_utility_code(env):
pass # will fail later
def signature_has_nongeneric_args(self):
argcount = len(self.args)
if argcount == 0 or (
argcount == 1 and (self.args[0].is_self_arg or
self.args[0].is_type_arg)):
return 0
return 1
def signature_has_generic_args(self):
return self.signature.has_generic_args
def generate_function_body(self, code):
args = []
if self.signature.has_dummy_arg:
args.append(Naming.self_cname)
for arg in self.args:
if arg.hdr_type and not (arg.type.is_memoryviewslice or
arg.type.is_struct or
arg.type.is_complex):
args.append(arg.type.cast_code(arg.entry.cname))
else:
args.append(arg.entry.cname)
if self.star_arg:
args.append(self.star_arg.entry.cname)
if self.starstar_arg:
args.append(self.starstar_arg.entry.cname)
args = ', '.join(args)
if not self.return_type.is_void:
code.put('%s = ' % Naming.retval_cname)
code.putln('%s(%s);' % (
self.target.entry.pyfunc_cname, args))
def generate_function_definitions(self, env, code):
lenv = self.target.local_scope
# Generate C code for header and body of function
code.mark_pos(self.pos)
code.putln("")
code.putln("/* Python wrapper */")
preprocessor_guard = self.target.get_preprocessor_guard()
if preprocessor_guard:
code.putln(preprocessor_guard)
code.enter_cfunc_scope()
code.return_from_error_cleanup_label = code.new_label()
with_pymethdef = (self.target.needs_assignment_synthesis(env, code) or
self.target.pymethdef_required)
self.generate_function_header(code, with_pymethdef)
self.generate_argument_declarations(lenv, code)
tempvardecl_code = code.insertion_point()
if self.return_type.is_pyobject:
retval_init = ' = 0'
else:
retval_init = ''
if not self.return_type.is_void:
code.putln('%s%s;' % (
self.return_type.declaration_code(Naming.retval_cname),
retval_init))
code.put_declare_refcount_context()
code.put_setup_refcount_context('%s (wrapper)' % self.name)
self.generate_argument_parsing_code(lenv, code)
self.generate_argument_type_tests(code)
self.generate_function_body(code)
# ----- Go back and insert temp variable declarations
tempvardecl_code.put_temp_declarations(code.funcstate)
code.mark_pos(self.pos)
code.putln("")
code.putln("/* function exit code */")
# ----- Error cleanup
if code.error_label in code.labels_used:
code.put_goto(code.return_label)
code.put_label(code.error_label)
for cname, type in code.funcstate.all_managed_temps():
code.put_xdecref(cname, type)
err_val = self.error_value()
if err_val is not None:
code.putln("%s = %s;" % (Naming.retval_cname, err_val))
# ----- Non-error return cleanup
code.put_label(code.return_label)
for entry in lenv.var_entries:
if entry.is_arg and entry.type.is_pyobject:
code.put_var_decref(entry)
code.put_finish_refcount_context()
if not self.return_type.is_void:
code.putln("return %s;" % Naming.retval_cname)
code.putln('}')
code.exit_cfunc_scope()
if preprocessor_guard:
code.putln("#endif /*!(%s)*/" % preprocessor_guard)
def generate_function_header(self, code, with_pymethdef, proto_only=0):
arg_code_list = []
sig = self.signature
if sig.has_dummy_arg or self.self_in_stararg:
arg_code = "PyObject *%s" % Naming.self_cname
if not sig.has_dummy_arg:
arg_code = 'CYTHON_UNUSED ' + arg_code
arg_code_list.append(arg_code)
for arg in self.args:
if not arg.is_generic:
if arg.is_self_arg or arg.is_type_arg:
arg_code_list.append("PyObject *%s" % arg.hdr_cname)
else:
arg_code_list.append(
arg.hdr_type.declaration_code(arg.hdr_cname))
entry = self.target.entry
if not entry.is_special and sig.method_flags() == [TypeSlots.method_noargs]:
arg_code_list.append("CYTHON_UNUSED PyObject *unused")
if entry.scope.is_c_class_scope and entry.name == "__ipow__":
arg_code_list.append("CYTHON_UNUSED PyObject *unused")
if sig.has_generic_args:
arg_code_list.append(
"PyObject *%s, PyObject *%s"
% (Naming.args_cname, Naming.kwds_cname))
arg_code = ", ".join(arg_code_list)
# Prevent warning: unused function '__pyx_pw_5numpy_7ndarray_1__getbuffer__'
mf = ""
if (entry.name in ("__getbuffer__", "__releasebuffer__")
and entry.scope.is_c_class_scope):
mf = "CYTHON_UNUSED "
with_pymethdef = False
dc = self.return_type.declaration_code(entry.func_cname)
header = "static %s%s(%s)" % (mf, dc, arg_code)
code.putln("%s; /*proto*/" % header)
if proto_only:
if self.target.fused_py_func:
# If we are the specialized version of the cpdef, we still
# want the prototype for the "fused cpdef", in case we're
# checking to see if our method was overridden in Python
self.target.fused_py_func.generate_function_header(
code, with_pymethdef, proto_only=True)
return
if (Options.docstrings and entry.doc and
not self.target.fused_py_func and
not entry.scope.is_property_scope and
(not entry.is_special or entry.wrapperbase_cname)):
# h_code = code.globalstate['h_code']
docstr = entry.doc
if docstr.is_unicode:
docstr = docstr.utf8encode()
code.putln(
'static char %s[] = "%s";' % (
entry.doc_cname,
split_string_literal(escape_byte_string(docstr))))
if entry.is_special:
code.putln('#if CYTHON_COMPILING_IN_CPYTHON')
code.putln(
"struct wrapperbase %s;" % entry.wrapperbase_cname)
code.putln('#endif')
if with_pymethdef or self.target.fused_py_func:
code.put(
"static PyMethodDef %s = " %
entry.pymethdef_cname)
code.put_pymethoddef(self.target.entry, ";", allow_skip=False)
code.putln("%s {" % header)
def generate_argument_declarations(self, env, code):
for arg in self.args:
if arg.is_generic:
if arg.needs_conversion:
code.putln("PyObject *%s = 0;" % arg.hdr_cname)
else:
code.put_var_declaration(arg.entry)
for entry in env.var_entries:
if entry.is_arg:
code.put_var_declaration(entry)
def generate_argument_parsing_code(self, env, code):
# Generate fast equivalent of PyArg_ParseTuple call for
# generic arguments, if any, including args/kwargs
old_error_label = code.new_error_label()
our_error_label = code.error_label
end_label = code.new_label("argument_unpacking_done")
has_kwonly_args = self.num_kwonly_args > 0
has_star_or_kw_args = self.star_arg is not None \
or self.starstar_arg is not None or has_kwonly_args
for arg in self.args:
if not arg.type.is_pyobject:
if not arg.type.create_from_py_utility_code(env):
pass # will fail later
if not self.signature_has_generic_args():
if has_star_or_kw_args:
error(self.pos, "This method cannot have * or keyword arguments")
self.generate_argument_conversion_code(code)
elif not self.signature_has_nongeneric_args():
# func(*args) or func(**kw) or func(*args, **kw)
self.generate_stararg_copy_code(code)
else:
self.generate_tuple_and_keyword_parsing_code(self.args, end_label, code)
code.error_label = old_error_label
if code.label_used(our_error_label):
if not code.label_used(end_label):
code.put_goto(end_label)
code.put_label(our_error_label)
if has_star_or_kw_args:
self.generate_arg_decref(self.star_arg, code)
if self.starstar_arg:
if self.starstar_arg.entry.xdecref_cleanup:
code.put_var_xdecref_clear(self.starstar_arg.entry)
else:
code.put_var_decref_clear(self.starstar_arg.entry)
code.put_add_traceback(self.target.entry.qualified_name)
code.put_finish_refcount_context()
code.putln("return %s;" % self.error_value())
if code.label_used(end_label):
code.put_label(end_label)
def generate_arg_xdecref(self, arg, code):
if arg:
code.put_var_xdecref_clear(arg.entry)
def generate_arg_decref(self, arg, code):
if arg:
code.put_var_decref_clear(arg.entry)
def generate_stararg_copy_code(self, code):
if not self.star_arg:
code.globalstate.use_utility_code(
UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c"))
code.putln("if (unlikely(PyTuple_GET_SIZE(%s) > 0)) {" %
Naming.args_cname)
code.put('__Pyx_RaiseArgtupleInvalid("%s", 1, 0, 0, PyTuple_GET_SIZE(%s)); return %s;' % (
self.name, Naming.args_cname, self.error_value()))
code.putln("}")
if self.starstar_arg:
if self.star_arg:
kwarg_check = "unlikely(%s)" % Naming.kwds_cname
else:
kwarg_check = "%s" % Naming.kwds_cname
else:
kwarg_check = "unlikely(%s) && unlikely(PyDict_Size(%s) > 0)" % (
Naming.kwds_cname, Naming.kwds_cname)
code.globalstate.use_utility_code(
UtilityCode.load_cached("KeywordStringCheck", "FunctionArguments.c"))
code.putln(
"if (%s && unlikely(!__Pyx_CheckKeywordStrings(%s, \"%s\", %d))) return %s;" % (
kwarg_check, Naming.kwds_cname, self.name,
bool(self.starstar_arg), self.error_value()))
if self.starstar_arg:
code.putln("%s = (%s) ? PyDict_Copy(%s) : PyDict_New();" % (
self.starstar_arg.entry.cname,
Naming.kwds_cname,
Naming.kwds_cname))
code.putln("if (unlikely(!%s)) return %s;" % (
self.starstar_arg.entry.cname, self.error_value()))
self.starstar_arg.entry.xdecref_cleanup = 0
code.put_gotref(self.starstar_arg.entry.cname)
if self.self_in_stararg and not self.target.is_staticmethod:
# need to create a new tuple with 'self' inserted as first item
code.put("%s = PyTuple_New(PyTuple_GET_SIZE(%s)+1); if (unlikely(!%s)) " % (
self.star_arg.entry.cname,
Naming.args_cname,
self.star_arg.entry.cname))
if self.starstar_arg:
code.putln("{")
code.put_decref_clear(self.starstar_arg.entry.cname, py_object_type)
code.putln("return %s;" % self.error_value())
code.putln("}")
else:
code.putln("return %s;" % self.error_value())
code.put_gotref(self.star_arg.entry.cname)
code.put_incref(Naming.self_cname, py_object_type)
code.put_giveref(Naming.self_cname)
code.putln("PyTuple_SET_ITEM(%s, 0, %s);" % (
self.star_arg.entry.cname, Naming.self_cname))
temp = code.funcstate.allocate_temp(PyrexTypes.c_py_ssize_t_type, manage_ref=False)
code.putln("for (%s=0; %s < PyTuple_GET_SIZE(%s); %s++) {" % (
temp, temp, Naming.args_cname, temp))
code.putln("PyObject* item = PyTuple_GET_ITEM(%s, %s);" % (
Naming.args_cname, temp))
code.put_incref("item", py_object_type)
code.put_giveref("item")
code.putln("PyTuple_SET_ITEM(%s, %s+1, item);" % (
self.star_arg.entry.cname, temp))
code.putln("}")
code.funcstate.release_temp(temp)
self.star_arg.entry.xdecref_cleanup = 0
elif self.star_arg:
code.put_incref(Naming.args_cname, py_object_type)
code.putln("%s = %s;" % (
self.star_arg.entry.cname,
Naming.args_cname))
self.star_arg.entry.xdecref_cleanup = 0
def generate_tuple_and_keyword_parsing_code(self, args, success_label, code):
argtuple_error_label = code.new_label("argtuple_error")
positional_args = []
required_kw_only_args = []
optional_kw_only_args = []
for arg in args:
if arg.is_generic:
if arg.default:
if not arg.is_self_arg and not arg.is_type_arg:
if arg.kw_only:
optional_kw_only_args.append(arg)
else:
positional_args.append(arg)
elif arg.kw_only:
required_kw_only_args.append(arg)
elif not arg.is_self_arg and not arg.is_type_arg:
positional_args.append(arg)
# sort required kw-only args before optional ones to avoid special
# cases in the unpacking code
kw_only_args = required_kw_only_args + optional_kw_only_args
min_positional_args = self.num_required_args - self.num_required_kw_args
if len(args) > 0 and (args[0].is_self_arg or args[0].is_type_arg):
min_positional_args -= 1
max_positional_args = len(positional_args)
has_fixed_positional_count = not self.star_arg and \
min_positional_args == max_positional_args
has_kw_only_args = bool(kw_only_args)
if self.num_required_kw_args:
code.globalstate.use_utility_code(
UtilityCode.load_cached("RaiseKeywordRequired", "FunctionArguments.c"))
if self.starstar_arg or self.star_arg:
self.generate_stararg_init_code(max_positional_args, code)
code.putln('{')
all_args = tuple(positional_args) + tuple(kw_only_args)
code.putln("static PyObject **%s[] = {%s,0};" % (
Naming.pykwdlist_cname,
','.join([ '&%s' % code.intern_identifier(arg.name)
for arg in all_args ])))
# Before being converted and assigned to the target variables,
# borrowed references to all unpacked argument values are
# collected into a local PyObject* array called "values",
# regardless if they were taken from default arguments,
# positional arguments or keyword arguments. Note that
# C-typed default arguments are handled at conversion time,
# so their array value is NULL in the end if no argument
# was passed for them.
self.generate_argument_values_setup_code(all_args, code)
# --- optimised code when we receive keyword arguments
code.putln("if (%s(%s)) {" % (
(self.num_required_kw_args > 0) and "likely" or "unlikely",
Naming.kwds_cname))
self.generate_keyword_unpacking_code(
min_positional_args, max_positional_args,
has_fixed_positional_count, has_kw_only_args,
all_args, argtuple_error_label, code)
# --- optimised code when we do not receive any keyword arguments
if (self.num_required_kw_args and min_positional_args > 0) or min_positional_args == max_positional_args:
# Python raises arg tuple related errors first, so we must
# check the length here
if min_positional_args == max_positional_args and not self.star_arg:
compare = '!='
else:
compare = '<'
code.putln('} else if (PyTuple_GET_SIZE(%s) %s %d) {' % (
Naming.args_cname, compare, min_positional_args))
code.put_goto(argtuple_error_label)
if self.num_required_kw_args:
# pure error case: keywords required but not passed
if max_positional_args > min_positional_args and not self.star_arg:
code.putln('} else if (PyTuple_GET_SIZE(%s) > %d) {' % (
Naming.args_cname, max_positional_args))
code.put_goto(argtuple_error_label)
code.putln('} else {')
for i, arg in enumerate(kw_only_args):
if not arg.default:
pystring_cname = code.intern_identifier(arg.name)
# required keyword-only argument missing
code.put('__Pyx_RaiseKeywordRequired("%s", %s); ' % (
self.name,
pystring_cname))
code.putln(code.error_goto(self.pos))
break
else:
# optimised tuple unpacking code
code.putln('} else {')
if min_positional_args == max_positional_args:
# parse the exact number of positional arguments from
# the args tuple
for i, arg in enumerate(positional_args):
code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (i, Naming.args_cname, i))
else:
# parse the positional arguments from the variable length
# args tuple and reject illegal argument tuple sizes
code.putln('switch (PyTuple_GET_SIZE(%s)) {' % Naming.args_cname)
if self.star_arg:
code.putln('default:')
reversed_args = list(enumerate(positional_args))[::-1]
for i, arg in reversed_args:
if i >= min_positional_args-1:
code.put('case %2d: ' % (i+1))
code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (i, Naming.args_cname, i))
if min_positional_args == 0:
code.put('case 0: ')
code.putln('break;')
if self.star_arg:
if min_positional_args:
for i in range(min_positional_args-1, -1, -1):
code.putln('case %2d:' % i)
code.put_goto(argtuple_error_label)
else:
code.put('default: ')
code.put_goto(argtuple_error_label)
code.putln('}')
code.putln('}') # end of the conditional unpacking blocks
# Convert arg values to their final type and assign them.
# Also inject non-Python default arguments, which do cannot
# live in the values[] array.
for i, arg in enumerate(all_args):
self.generate_arg_assignment(arg, "values[%d]" % i, code)
code.putln('}') # end of the whole argument unpacking block
if code.label_used(argtuple_error_label):
code.put_goto(success_label)
code.put_label(argtuple_error_label)
code.globalstate.use_utility_code(
UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c"))
code.put('__Pyx_RaiseArgtupleInvalid("%s", %d, %d, %d, PyTuple_GET_SIZE(%s)); ' % (
self.name, has_fixed_positional_count,
min_positional_args, max_positional_args,
Naming.args_cname))
code.putln(code.error_goto(self.pos))
def generate_arg_assignment(self, arg, item, code):
if arg.type.is_pyobject:
# Python default arguments were already stored in 'item' at the very beginning
if arg.is_generic:
item = PyrexTypes.typecast(arg.type, PyrexTypes.py_object_type, item)
entry = arg.entry
code.putln("%s = %s;" % (entry.cname, item))
else:
func = arg.type.from_py_function
if func:
if arg.default:
# C-typed default arguments must be handled here
code.putln('if (%s) {' % item)
rhs = "%s(%s)" % (func, item)
if arg.type.is_enum:
rhs = arg.type.cast_code(rhs)
code.putln("%s = %s; %s" % (
arg.entry.cname,
rhs,
code.error_goto_if(arg.type.error_condition(arg.entry.cname), arg.pos)))
if arg.default:
code.putln('} else {')
code.putln(
"%s = %s;" % (
arg.entry.cname,
arg.calculate_default_value_code(code)))
if arg.type.is_memoryviewslice:
code.put_incref_memoryviewslice(arg.entry.cname,
have_gil=True)
code.putln('}')
else:
error(arg.pos, "Cannot convert Python object argument to type '%s'" % arg.type)
def generate_stararg_init_code(self, max_positional_args, code):
if self.starstar_arg:
self.starstar_arg.entry.xdecref_cleanup = 0
code.putln('%s = PyDict_New(); if (unlikely(!%s)) return %s;' % (
self.starstar_arg.entry.cname,
self.starstar_arg.entry.cname,
self.error_value()))
code.put_gotref(self.starstar_arg.entry.cname)
if self.star_arg:
self.star_arg.entry.xdecref_cleanup = 0
code.putln('if (PyTuple_GET_SIZE(%s) > %d) {' % (
Naming.args_cname,
max_positional_args))
code.putln('%s = PyTuple_GetSlice(%s, %d, PyTuple_GET_SIZE(%s));' % (
self.star_arg.entry.cname, Naming.args_cname,
max_positional_args, Naming.args_cname))
code.putln("if (unlikely(!%s)) {" % self.star_arg.entry.cname)
if self.starstar_arg:
code.put_decref_clear(self.starstar_arg.entry.cname, py_object_type)
code.put_finish_refcount_context()
code.putln('return %s;' % self.error_value())
code.putln('}')
code.put_gotref(self.star_arg.entry.cname)
code.putln('} else {')
code.put("%s = %s; " % (self.star_arg.entry.cname, Naming.empty_tuple))
code.put_incref(Naming.empty_tuple, py_object_type)
code.putln('}')
def generate_argument_values_setup_code(self, args, code):
max_args = len(args)
# the 'values' array collects borrowed references to arguments
# before doing any type coercion etc.
code.putln("PyObject* values[%d] = {%s};" % (
max_args, ','.join('0'*max_args)))
if self.target.defaults_struct:
code.putln('%s *%s = __Pyx_CyFunction_Defaults(%s, %s);' % (
self.target.defaults_struct, Naming.dynamic_args_cname,
self.target.defaults_struct, Naming.self_cname))
# assign borrowed Python default values to the values array,
# so that they can be overwritten by received arguments below
for i, arg in enumerate(args):
if arg.default and arg.type.is_pyobject:
default_value = arg.calculate_default_value_code(code)
code.putln('values[%d] = %s;' % (i, arg.type.as_pyobject(default_value)))
def generate_keyword_unpacking_code(self, min_positional_args, max_positional_args,
has_fixed_positional_count, has_kw_only_args,
all_args, argtuple_error_label, code):
code.putln('Py_ssize_t kw_args;')
code.putln('const Py_ssize_t pos_args = PyTuple_GET_SIZE(%s);' % Naming.args_cname)
# copy the values from the args tuple and check that it's not too long
code.putln('switch (pos_args) {')
if self.star_arg:
code.putln('default:')
for i in range(max_positional_args-1, -1, -1):
code.put('case %2d: ' % (i+1))
code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (
i, Naming.args_cname, i))
code.putln('case 0: break;')
if not self.star_arg:
code.put('default: ') # more arguments than allowed
code.put_goto(argtuple_error_label)
code.putln('}')
# The code above is very often (but not always) the same as
# the optimised non-kwargs tuple unpacking code, so we keep
# the code block above at the very top, before the following
# 'external' PyDict_Size() call, to make it easy for the C
# compiler to merge the two separate tuple unpacking
# implementations into one when they turn out to be identical.
# If we received kwargs, fill up the positional/required
# arguments with values from the kw dict
code.putln('kw_args = PyDict_Size(%s);' % Naming.kwds_cname)
if self.num_required_args or max_positional_args > 0:
last_required_arg = -1
for i, arg in enumerate(all_args):
if not arg.default:
last_required_arg = i
if last_required_arg < max_positional_args:
last_required_arg = max_positional_args-1
if max_positional_args > 0:
code.putln('switch (pos_args) {')
for i, arg in enumerate(all_args[:last_required_arg+1]):
if max_positional_args > 0 and i <= max_positional_args:
if self.star_arg and i == max_positional_args:
code.putln('default:')
else:
code.putln('case %2d:' % i)
pystring_cname = code.intern_identifier(arg.name)
if arg.default:
if arg.kw_only:
# optional kw-only args are handled separately below
continue
code.putln('if (kw_args > 0) {')
# don't overwrite default argument
code.putln('PyObject* value = PyDict_GetItem(%s, %s);' % (
Naming.kwds_cname, pystring_cname))
code.putln('if (value) { values[%d] = value; kw_args--; }' % i)
code.putln('}')
else:
code.putln('if (likely((values[%d] = PyDict_GetItem(%s, %s)) != 0)) kw_args--;' % (
i, Naming.kwds_cname, pystring_cname))
if i < min_positional_args:
if i == 0:
# special case: we know arg 0 is missing
code.put('else ')
code.put_goto(argtuple_error_label)
else:
# print the correct number of values (args or
# kwargs) that were passed into positional
# arguments up to this point
code.putln('else {')
code.globalstate.use_utility_code(
UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c"))
code.put('__Pyx_RaiseArgtupleInvalid("%s", %d, %d, %d, %d); ' % (
self.name, has_fixed_positional_count,
min_positional_args, max_positional_args, i))
code.putln(code.error_goto(self.pos))
code.putln('}')
elif arg.kw_only:
code.putln('else {')
code.put('__Pyx_RaiseKeywordRequired("%s", %s); ' %(
self.name, pystring_cname))
code.putln(code.error_goto(self.pos))
code.putln('}')
if max_positional_args > 0:
code.putln('}')
if has_kw_only_args:
# unpack optional keyword-only arguments separately because
# checking for interned strings in a dict is faster than iterating
self.generate_optional_kwonly_args_unpacking_code(all_args, code)
code.putln('if (unlikely(kw_args > 0)) {')
# non-positional/-required kw args left in dict: default args,
# kw-only args, **kwargs or error
#
# This is sort of a catch-all: except for checking required
# arguments, this will always do the right thing for unpacking
# keyword arguments, so that we can concentrate on optimising
# common cases above.
if max_positional_args == 0:
pos_arg_count = "0"
elif self.star_arg:
code.putln("const Py_ssize_t used_pos_args = (pos_args < %d) ? pos_args : %d;" % (
max_positional_args, max_positional_args))
pos_arg_count = "used_pos_args"
else:
pos_arg_count = "pos_args"
code.globalstate.use_utility_code(
UtilityCode.load_cached("ParseKeywords", "FunctionArguments.c"))
code.putln(
'if (unlikely(__Pyx_ParseOptionalKeywords(%s, %s, %s, values, %s, "%s") < 0)) %s' % (
Naming.kwds_cname,
Naming.pykwdlist_cname,
self.starstar_arg and self.starstar_arg.entry.cname or '0',
pos_arg_count,
self.name,
code.error_goto(self.pos)))
code.putln('}')
def generate_optional_kwonly_args_unpacking_code(self, all_args, code):
optional_args = []
first_optional_arg = -1
for i, arg in enumerate(all_args):
if not arg.kw_only or not arg.default:
continue
if not optional_args:
first_optional_arg = i
optional_args.append(arg.name)
if optional_args:
if len(optional_args) > 1:
# if we receive more than the named kwargs, we either have **kwargs
# (in which case we must iterate anyway) or it's an error (which we
# also handle during iteration) => skip this part if there are more
code.putln('if (kw_args > 0 && %s(kw_args <= %d)) {' % (
not self.starstar_arg and 'likely' or '',
len(optional_args)))
code.putln('Py_ssize_t index;')
# not unrolling the loop here reduces the C code overhead
code.putln('for (index = %d; index < %d && kw_args > 0; index++) {' % (
first_optional_arg, first_optional_arg + len(optional_args)))
else:
code.putln('if (kw_args == 1) {')
code.putln('const Py_ssize_t index = %d;' % first_optional_arg)
code.putln('PyObject* value = PyDict_GetItem(%s, *%s[index]);' % (
Naming.kwds_cname, Naming.pykwdlist_cname))
code.putln('if (value) { values[index] = value; kw_args--; }')
if len(optional_args) > 1:
code.putln('}')
code.putln('}')
def generate_argument_conversion_code(self, code):
# Generate code to convert arguments from signature type to
# declared type, if needed. Also copies signature arguments
# into closure fields.
for arg in self.args:
if arg.needs_conversion:
self.generate_arg_conversion(arg, code)
def generate_arg_conversion(self, arg, code):
# Generate conversion code for one argument.
old_type = arg.hdr_type
new_type = arg.type
if old_type.is_pyobject:
if arg.default:
code.putln("if (%s) {" % arg.hdr_cname)
else:
code.putln("assert(%s); {" % arg.hdr_cname)
self.generate_arg_conversion_from_pyobject(arg, code)
code.putln("}")
elif new_type.is_pyobject:
self.generate_arg_conversion_to_pyobject(arg, code)
else:
if new_type.assignable_from(old_type):
code.putln(
"%s = %s;" % (arg.entry.cname, arg.hdr_cname))
else:
error(arg.pos,
"Cannot convert 1 argument from '%s' to '%s'" %
(old_type, new_type))
def generate_arg_conversion_from_pyobject(self, arg, code):
new_type = arg.type
func = new_type.from_py_function
# copied from CoerceFromPyTypeNode
if func:
lhs = arg.entry.cname
rhs = "%s(%s)" % (func, arg.hdr_cname)
if new_type.is_enum:
rhs = PyrexTypes.typecast(new_type, PyrexTypes.c_long_type, rhs)
code.putln("%s = %s; %s" % (
lhs,
rhs,
code.error_goto_if(new_type.error_condition(arg.entry.cname), arg.pos)))
else:
error(arg.pos,
"Cannot convert Python object argument to type '%s'"
% new_type)
def generate_arg_conversion_to_pyobject(self, arg, code):
old_type = arg.hdr_type
func = old_type.to_py_function
if func:
code.putln("%s = %s(%s); %s" % (
arg.entry.cname,
func,
arg.hdr_cname,
code.error_goto_if_null(arg.entry.cname, arg.pos)))
code.put_var_gotref(arg.entry)
else:
error(arg.pos,
"Cannot convert argument of type '%s' to Python object"
% old_type)
def generate_argument_type_tests(self, code):
# Generate type tests for args whose signature
# type is PyObject * and whose declared type is
# a subtype thereof.
for arg in self.args:
if arg.needs_type_test:
self.generate_arg_type_test(arg, code)
elif not arg.accept_none and (arg.type.is_pyobject or
arg.type.is_buffer or
arg.type.is_memoryviewslice):
self.generate_arg_none_check(arg, code)
def error_value(self):
return self.signature.error_value
class GeneratorDefNode(DefNode):
# Generator function node that creates a new generator instance when called.
#
# gbody GeneratorBodyDefNode the function implementing the generator
#
is_generator = True
needs_closure = True
child_attrs = DefNode.child_attrs + ["gbody"]
def __init__(self, **kwargs):
# XXX: don't actually needs a body
kwargs['body'] = StatListNode(kwargs['pos'], stats=[])
super(GeneratorDefNode, self).__init__(**kwargs)
def analyse_declarations(self, env):
super(GeneratorDefNode, self).analyse_declarations(env)
self.gbody.local_scope = self.local_scope
self.gbody.analyse_declarations(env)
def generate_function_body(self, env, code):
body_cname = self.gbody.entry.func_cname
code.putln('{')
code.putln('__pyx_GeneratorObject *gen = __Pyx_Generator_New('
'(__pyx_generator_body_t) %s, (PyObject *) %s); %s' % (
body_cname, Naming.cur_scope_cname,
code.error_goto_if_null('gen', self.pos)))
code.put_decref(Naming.cur_scope_cname, py_object_type)
if self.requires_classobj:
classobj_cname = 'gen->classobj'
code.putln('%s = __Pyx_CyFunction_GetClassObj(%s);' % (
classobj_cname, Naming.self_cname))
code.put_incref(classobj_cname, py_object_type)
code.put_giveref(classobj_cname)
code.put_finish_refcount_context()
code.putln('return (PyObject *) gen;')
code.putln('}')
def generate_function_definitions(self, env, code):
env.use_utility_code(UtilityCode.load_cached("Generator", "Generator.c"))
self.gbody.generate_function_header(code, proto=True)
super(GeneratorDefNode, self).generate_function_definitions(env, code)
self.gbody.generate_function_definitions(env, code)
class GeneratorBodyDefNode(DefNode):
# Main code body of a generator implemented as a DefNode.
#
is_generator_body = True
def __init__(self, pos=None, name=None, body=None):
super(GeneratorBodyDefNode, self).__init__(
pos=pos, body=body, name=name, doc=None,
args=[], star_arg=None, starstar_arg=None)
def declare_generator_body(self, env):
prefix = env.next_id(env.scope_prefix)
name = env.next_id('generator')
cname = Naming.genbody_prefix + prefix + name
entry = env.declare_var(None, py_object_type, self.pos,
cname=cname, visibility='private')
entry.func_cname = cname
entry.qualified_name = EncodedString(self.name)
self.entry = entry
def analyse_declarations(self, env):
self.analyse_argument_types(env)
self.declare_generator_body(env)
def generate_function_header(self, code, proto=False):
header = "static PyObject *%s(__pyx_GeneratorObject *%s, PyObject *%s)" % (
self.entry.func_cname,
Naming.generator_cname,
Naming.sent_value_cname)
if proto:
code.putln('%s; /* proto */' % header)
else:
code.putln('%s /* generator body */\n{' % header)
def generate_function_definitions(self, env, code):
lenv = self.local_scope
# Generate closure function definitions
self.body.generate_function_definitions(lenv, code)
# Generate C code for header and body of function
code.enter_cfunc_scope()
code.return_from_error_cleanup_label = code.new_label()
# ----- Top-level constants used by this function
code.mark_pos(self.pos)
self.generate_cached_builtins_decls(lenv, code)
# ----- Function header
code.putln("")
self.generate_function_header(code)
closure_init_code = code.insertion_point()
# ----- Local variables
code.putln("PyObject *%s = NULL;" % Naming.retval_cname)
tempvardecl_code = code.insertion_point()
code.put_declare_refcount_context()
code.put_setup_refcount_context(self.entry.name)
# ----- Resume switch point.
code.funcstate.init_closure_temps(lenv.scope_class.type.scope)
resume_code = code.insertion_point()
first_run_label = code.new_label('first_run')
code.use_label(first_run_label)
code.put_label(first_run_label)
code.putln('%s' %
(code.error_goto_if_null(Naming.sent_value_cname, self.pos)))
# ----- Function body
self.generate_function_body(env, code)
# ----- Closure initialization
if lenv.scope_class.type.scope.entries:
closure_init_code.putln('%s = %s;' % (
lenv.scope_class.type.declaration_code(Naming.cur_scope_cname),
lenv.scope_class.type.cast_code('%s->closure' %
Naming.generator_cname)))
code.mark_pos(self.pos)
code.putln("")
code.putln("/* function exit code */")
# on normal generator termination, we do not take the exception propagation
# path: no traceback info is required and not creating it is much faster
if not self.body.is_terminator:
code.putln('PyErr_SetNone(PyExc_StopIteration);')
# ----- Error cleanup
if code.error_label in code.labels_used:
if not self.body.is_terminator:
code.put_goto(code.return_label)
code.put_label(code.error_label)
for cname, type in code.funcstate.all_managed_temps():
code.put_xdecref(cname, type)
code.put_add_traceback(self.entry.qualified_name)
# ----- Non-error return cleanup
code.put_label(code.return_label)
code.put_xdecref(Naming.retval_cname, py_object_type)
code.putln('%s->resume_label = -1;' % Naming.generator_cname)
# clean up as early as possible to help breaking any reference cycles
code.putln('__Pyx_Generator_clear((PyObject*)%s);' % Naming.generator_cname)
code.put_finish_refcount_context()
code.putln('return NULL;')
code.putln("}")
# ----- Go back and insert temp variable declarations
tempvardecl_code.put_temp_declarations(code.funcstate)
# ----- Generator resume code
resume_code.putln("switch (%s->resume_label) {" % (
Naming.generator_cname))
resume_code.putln("case 0: goto %s;" % first_run_label)
for i, label in code.yield_labels:
resume_code.putln("case %d: goto %s;" % (i, label))
resume_code.putln("default: /* CPython raises the right error here */")
resume_code.put_finish_refcount_context()
resume_code.putln("return NULL;")
resume_code.putln("}")
code.exit_cfunc_scope()
class OverrideCheckNode(StatNode):
# A Node for dispatching to the def method if it
# is overriden.
#
# py_func
#
# args
# func_temp
# body
child_attrs = ['body']
body = None
def analyse_expressions(self, env):
self.args = env.arg_entries
if self.py_func.is_module_scope:
first_arg = 0
else:
first_arg = 1
import ExprNodes
self.func_node = ExprNodes.RawCNameExprNode(self.pos, py_object_type)
call_node = ExprNodes.SimpleCallNode(
self.pos, function=self.func_node,
args=[ ExprNodes.NameNode(self.pos, name=arg.name)
for arg in self.args[first_arg:] ])
self.body = ReturnStatNode(self.pos, value=call_node)
self.body = self.body.analyse_expressions(env)
return self
def generate_execution_code(self, code):
interned_attr_cname = code.intern_identifier(self.py_func.entry.name)
# Check to see if we are an extension type
if self.py_func.is_module_scope:
self_arg = "((PyObject *)%s)" % Naming.module_cname
else:
self_arg = "((PyObject *)%s)" % self.args[0].cname
code.putln("/* Check if called by wrapper */")
code.putln("if (unlikely(%s)) ;" % Naming.skip_dispatch_cname)
code.putln("/* Check if overridden in Python */")
if self.py_func.is_module_scope:
code.putln("else {")
else:
code.putln("else if (unlikely(Py_TYPE(%s)->tp_dictoffset != 0)) {" % self_arg)
func_node_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True)
self.func_node.set_cname(func_node_temp)
# need to get attribute manually--scope would return cdef method
code.globalstate.use_utility_code(
UtilityCode.load_cached("PyObjectGetAttrStr", "ObjectHandling.c"))
err = code.error_goto_if_null(func_node_temp, self.pos)
code.putln("%s = __Pyx_PyObject_GetAttrStr(%s, %s); %s" % (
func_node_temp, self_arg, interned_attr_cname, err))
code.put_gotref(func_node_temp)
is_builtin_function_or_method = "PyCFunction_Check(%s)" % func_node_temp
is_overridden = "(PyCFunction_GET_FUNCTION(%s) != (PyCFunction)%s)" % (
func_node_temp, self.py_func.entry.func_cname)
code.putln("if (!%s || %s) {" % (is_builtin_function_or_method, is_overridden))
self.body.generate_execution_code(code)
code.putln("}")
code.put_decref_clear(func_node_temp, PyrexTypes.py_object_type)
code.funcstate.release_temp(func_node_temp)
code.putln("}")
class ClassDefNode(StatNode, BlockNode):
pass
class PyClassDefNode(ClassDefNode):
# A Python class definition.
#
# name EncodedString Name of the class
# doc string or None
# body StatNode Attribute definition code
# entry Symtab.Entry
# scope PyClassScope
# decorators [DecoratorNode] list of decorators or None
#
# The following subnodes are constructed internally:
#
# dict DictNode Class dictionary or Py3 namespace
# classobj ClassNode Class object
# target NameNode Variable to assign class object to
child_attrs = ["body", "dict", "metaclass", "mkw", "bases", "class_result",
"target", "class_cell", "decorators"]
decorators = None
class_result = None
is_py3_style_class = False # Python3 style class (kwargs)
metaclass = None
mkw = None
def __init__(self, pos, name, bases, doc, body, decorators=None,
keyword_args=None, starstar_arg=None, force_py3_semantics=False):
StatNode.__init__(self, pos)
self.name = name
self.doc = doc
self.body = body
self.decorators = decorators
self.bases = bases
import ExprNodes
if self.doc and Options.docstrings:
doc = embed_position(self.pos, self.doc)
doc_node = ExprNodes.StringNode(pos, value=doc)
else:
doc_node = None
allow_py2_metaclass = not force_py3_semantics
if keyword_args or starstar_arg:
allow_py2_metaclass = False
self.is_py3_style_class = True
if keyword_args and not starstar_arg:
for i, item in list(enumerate(keyword_args.key_value_pairs))[::-1]:
if item.key.value == 'metaclass':
if self.metaclass is not None:
error(item.pos, "keyword argument 'metaclass' passed multiple times")
# special case: we already know the metaclass,
# so we don't need to do the "build kwargs,
# find metaclass" dance at runtime
self.metaclass = item.value
del keyword_args.key_value_pairs[i]
if starstar_arg:
self.mkw = ExprNodes.KeywordArgsNode(
pos, keyword_args=keyword_args and keyword_args.key_value_pairs or [],
starstar_arg=starstar_arg)
elif keyword_args.key_value_pairs:
self.mkw = keyword_args
else:
assert self.metaclass is not None
if force_py3_semantics or self.bases or self.mkw or self.metaclass:
if self.metaclass is None:
if starstar_arg:
# **kwargs may contain 'metaclass' arg
mkdict = self.mkw
else:
mkdict = None
if (not mkdict and
self.bases.is_sequence_constructor and
not self.bases.args):
pass # no base classes => no inherited metaclass
else:
self.metaclass = ExprNodes.PyClassMetaclassNode(
pos, mkw=mkdict, bases=self.bases)
needs_metaclass_calculation = False
else:
needs_metaclass_calculation = True
self.dict = ExprNodes.PyClassNamespaceNode(
pos, name=name, doc=doc_node,
metaclass=self.metaclass, bases=self.bases, mkw=self.mkw)
self.classobj = ExprNodes.Py3ClassNode(
pos, name=name,
bases=self.bases, dict=self.dict, doc=doc_node,
metaclass=self.metaclass, mkw=self.mkw,
calculate_metaclass=needs_metaclass_calculation,
allow_py2_metaclass=allow_py2_metaclass)
else:
# no bases, no metaclass => old style class creation
self.dict = ExprNodes.DictNode(pos, key_value_pairs=[])
self.classobj = ExprNodes.ClassNode(
pos, name=name,
bases=bases, dict=self.dict, doc=doc_node)
self.target = ExprNodes.NameNode(pos, name=name)
self.class_cell = ExprNodes.ClassCellInjectorNode(self.pos)
def as_cclass(self):
"""
Return this node as if it were declared as an extension class
"""
if self.is_py3_style_class:
error(self.classobj.pos, "Python3 style class could not be represented as C class")
return
bases = self.classobj.bases.args
if len(bases) == 0:
base_class_name = None
base_class_module = None
elif len(bases) == 1:
base = bases[0]
path = []
from ExprNodes import AttributeNode, NameNode
while isinstance(base, AttributeNode):
path.insert(0, base.attribute)
base = base.obj
if isinstance(base, NameNode):
path.insert(0, base.name)
base_class_name = path[-1]
if len(path) > 1:
base_class_module = u'.'.join(path[:-1])
else:
base_class_module = None
else:
error(self.classobj.bases.args.pos, "Invalid base class")
else:
error(self.classobj.bases.args.pos, "C class may only have one base class")
return None
return CClassDefNode(self.pos,
visibility = 'private',
module_name = None,
class_name = self.name,
base_class_module = base_class_module,
base_class_name = base_class_name,
decorators = self.decorators,
body = self.body,
in_pxd = False,
doc = self.doc)
def create_scope(self, env):
genv = env
while genv.is_py_class_scope or genv.is_c_class_scope:
genv = genv.outer_scope
cenv = self.scope = PyClassScope(name = self.name, outer_scope = genv)
return cenv
def analyse_declarations(self, env):
class_result = self.classobj
if self.decorators:
from ExprNodes import SimpleCallNode
for decorator in self.decorators[::-1]:
class_result = SimpleCallNode(
decorator.pos,
function = decorator.decorator,
args = [class_result])
self.decorators = None
self.class_result = class_result
self.class_result.analyse_declarations(env)
self.target.analyse_target_declaration(env)
cenv = self.create_scope(env)
cenv.directives = env.directives
cenv.class_obj_cname = self.target.entry.cname
self.body.analyse_declarations(cenv)
def analyse_expressions(self, env):
if self.bases:
self.bases = self.bases.analyse_expressions(env)
if self.metaclass:
self.metaclass = self.metaclass.analyse_expressions(env)
if self.mkw:
self.mkw = self.mkw.analyse_expressions(env)
self.dict = self.dict.analyse_expressions(env)
self.class_result = self.class_result.analyse_expressions(env)
genv = env.global_scope()
cenv = self.scope
self.body = self.body.analyse_expressions(cenv)
self.target.analyse_target_expression(env, self.classobj)
self.class_cell = self.class_cell.analyse_expressions(cenv)
return self
def generate_function_definitions(self, env, code):
self.generate_lambda_definitions(self.scope, code)
self.body.generate_function_definitions(self.scope, code)
def generate_execution_code(self, code):
code.pyclass_stack.append(self)
cenv = self.scope
if self.bases:
self.bases.generate_evaluation_code(code)
if self.mkw:
self.mkw.generate_evaluation_code(code)
if self.metaclass:
self.metaclass.generate_evaluation_code(code)
self.dict.generate_evaluation_code(code)
cenv.namespace_cname = cenv.class_obj_cname = self.dict.result()
self.class_cell.generate_evaluation_code(code)
self.body.generate_execution_code(code)
self.class_result.generate_evaluation_code(code)
self.class_cell.generate_injection_code(
code, self.class_result.result())
self.class_cell.generate_disposal_code(code)
cenv.namespace_cname = cenv.class_obj_cname = self.classobj.result()
self.target.generate_assignment_code(self.class_result, code)
self.dict.generate_disposal_code(code)
self.dict.free_temps(code)
if self.metaclass:
self.metaclass.generate_disposal_code(code)
self.metaclass.free_temps(code)
if self.mkw:
self.mkw.generate_disposal_code(code)
self.mkw.free_temps(code)
if self.bases:
self.bases.generate_disposal_code(code)
self.bases.free_temps(code)
code.pyclass_stack.pop()
class CClassDefNode(ClassDefNode):
# An extension type definition.
#
# visibility 'private' or 'public' or 'extern'
# typedef_flag boolean
# api boolean
# module_name string or None For import of extern type objects
# class_name string Unqualified name of class
# as_name string or None Name to declare as in this scope
# base_class_module string or None Module containing the base class
# base_class_name string or None Name of the base class
# objstruct_name string or None Specified C name of object struct
# typeobj_name string or None Specified C name of type object
# in_pxd boolean Is in a .pxd file
# decorators [DecoratorNode] list of decorators or None
# doc string or None
# body StatNode or None
# entry Symtab.Entry
# base_type PyExtensionType or None
# buffer_defaults_node DictNode or None Declares defaults for a buffer
# buffer_defaults_pos
child_attrs = ["body"]
buffer_defaults_node = None
buffer_defaults_pos = None
typedef_flag = False
api = False
objstruct_name = None
typeobj_name = None
decorators = None
shadow = False
def buffer_defaults(self, env):
if not hasattr(self, '_buffer_defaults'):
import Buffer
if self.buffer_defaults_node:
self._buffer_defaults = Buffer.analyse_buffer_options(
self.buffer_defaults_pos,
env, [], self.buffer_defaults_node,
need_complete=False)
else:
self._buffer_defaults = None
return self._buffer_defaults
def declare(self, env):
if self.module_name and self.visibility != 'extern':
module_path = self.module_name.split(".")
home_scope = env.find_imported_module(module_path, self.pos)
if not home_scope:
return None
else:
home_scope = env
self.entry = home_scope.declare_c_class(
name = self.class_name,
pos = self.pos,
defining = 0,
implementing = 0,
module_name = self.module_name,
base_type = None,
objstruct_cname = self.objstruct_name,
typeobj_cname = self.typeobj_name,
visibility = self.visibility,
typedef_flag = self.typedef_flag,
api = self.api,
buffer_defaults = self.buffer_defaults(env),
shadow = self.shadow)
def analyse_declarations(self, env):
#print "CClassDefNode.analyse_declarations:", self.class_name
#print "...visibility =", self.visibility
#print "...module_name =", self.module_name
if env.in_cinclude and not self.objstruct_name:
error(self.pos, "Object struct name specification required for "
"C class defined in 'extern from' block")
if self.decorators:
error(self.pos,
"Decorators not allowed on cdef classes (used on type '%s')" % self.class_name)
self.base_type = None
# Now that module imports are cached, we need to
# import the modules for extern classes.
if self.module_name:
self.module = None
for module in env.cimported_modules:
if module.name == self.module_name:
self.module = module
if self.module is None:
self.module = ModuleScope(self.module_name, None, env.context)
self.module.has_extern_class = 1
env.add_imported_module(self.module)
if self.base_class_name:
if self.base_class_module:
base_class_scope = env.find_module(self.base_class_module, self.pos)
else:
base_class_scope = env
if self.base_class_name == 'object':
# extension classes are special and don't need to inherit from object
if base_class_scope is None or base_class_scope.lookup('object') is None:
self.base_class_name = None
self.base_class_module = None
base_class_scope = None
if base_class_scope:
base_class_entry = base_class_scope.find(self.base_class_name, self.pos)
if base_class_entry:
if not base_class_entry.is_type:
error(self.pos, "'%s' is not a type name" % self.base_class_name)
elif not base_class_entry.type.is_extension_type and \
not (base_class_entry.type.is_builtin_type and
base_class_entry.type.objstruct_cname):
error(self.pos, "'%s' is not an extension type" % self.base_class_name)
elif not base_class_entry.type.is_complete():
error(self.pos, "Base class '%s' of type '%s' is incomplete" % (
self.base_class_name, self.class_name))
elif base_class_entry.type.scope and base_class_entry.type.scope.directives and \
base_class_entry.type.is_final_type:
error(self.pos, "Base class '%s' of type '%s' is final" % (
self.base_class_name, self.class_name))
elif base_class_entry.type.is_builtin_type and \
base_class_entry.type.name in ('tuple', 'str', 'bytes'):
error(self.pos, "inheritance from PyVarObject types like '%s' is not currently supported"
% base_class_entry.type.name)
else:
self.base_type = base_class_entry.type
if env.directives.get('freelist', 0) > 0:
warning(self.pos, "freelists cannot be used on subtypes, only the base class can manage them", 1)
has_body = self.body is not None
if has_body and self.base_type and not self.base_type.scope:
# To properly initialize inherited attributes, the base type must
# be analysed before this type.
self.base_type.defered_declarations.append(lambda : self.analyse_declarations(env))
return
if self.module_name and self.visibility != 'extern':
module_path = self.module_name.split(".")
home_scope = env.find_imported_module(module_path, self.pos)
if not home_scope:
return
else:
home_scope = env
if self.visibility == 'extern':
if (self.module_name == '__builtin__' and
self.class_name in Builtin.builtin_types and
env.qualified_name[:8] != 'cpython.'): # allow overloaded names for cimporting from cpython
warning(self.pos, "%s already a builtin Cython type" % self.class_name, 1)
self.entry = home_scope.declare_c_class(
name = self.class_name,
pos = self.pos,
defining = has_body and self.in_pxd,
implementing = has_body and not self.in_pxd,
module_name = self.module_name,
base_type = self.base_type,
objstruct_cname = self.objstruct_name,
typeobj_cname = self.typeobj_name,
visibility = self.visibility,
typedef_flag = self.typedef_flag,
api = self.api,
buffer_defaults = self.buffer_defaults(env),
shadow = self.shadow)
if self.shadow:
home_scope.lookup(self.class_name).as_variable = self.entry
if home_scope is not env and self.visibility == 'extern':
env.add_imported_entry(self.class_name, self.entry, self.pos)
self.scope = scope = self.entry.type.scope
if scope is not None:
scope.directives = env.directives
if self.doc and Options.docstrings:
scope.doc = embed_position(self.pos, self.doc)
if has_body:
self.body.analyse_declarations(scope)
if self.in_pxd:
scope.defined = 1
else:
scope.implemented = 1
env.allocate_vtable_names(self.entry)
for thunk in self.entry.type.defered_declarations:
thunk()
def analyse_expressions(self, env):
if self.body:
scope = self.entry.type.scope
self.body = self.body.analyse_expressions(scope)
return self
def generate_function_definitions(self, env, code):
if self.body:
self.generate_lambda_definitions(self.scope, code)
self.body.generate_function_definitions(self.scope, code)
def generate_execution_code(self, code):
# This is needed to generate evaluation code for
# default values of method arguments.
if self.body:
self.body.generate_execution_code(code)
def annotate(self, code):
if self.body:
self.body.annotate(code)
class PropertyNode(StatNode):
# Definition of a property in an extension type.
#
# name string
# doc EncodedString or None Doc string
# entry Symtab.Entry
# body StatListNode
child_attrs = ["body"]
def analyse_declarations(self, env):
self.entry = env.declare_property(self.name, self.doc, self.pos)
self.entry.scope.directives = env.directives
self.body.analyse_declarations(self.entry.scope)
def analyse_expressions(self, env):
self.body = self.body.analyse_expressions(env)
return self
def generate_function_definitions(self, env, code):
self.body.generate_function_definitions(env, code)
def generate_execution_code(self, code):
pass
def annotate(self, code):
self.body.annotate(code)
class GlobalNode(StatNode):
# Global variable declaration.
#
# names [string]
child_attrs = []
def analyse_declarations(self, env):
for name in self.names:
env.declare_global(name, self.pos)
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class NonlocalNode(StatNode):
# Nonlocal variable declaration via the 'nonlocal' keyword.
#
# names [string]
child_attrs = []
def analyse_declarations(self, env):
for name in self.names:
env.declare_nonlocal(name, self.pos)
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class ExprStatNode(StatNode):
# Expression used as a statement.
#
# expr ExprNode
child_attrs = ["expr"]
def analyse_declarations(self, env):
import ExprNodes
if isinstance(self.expr, ExprNodes.GeneralCallNode):
func = self.expr.function.as_cython_attribute()
if func == u'declare':
args, kwds = self.expr.explicit_args_kwds()
if len(args):
error(self.expr.pos, "Variable names must be specified.")
for var, type_node in kwds.key_value_pairs:
type = type_node.analyse_as_type(env)
if type is None:
error(type_node.pos, "Unknown type")
else:
env.declare_var(var.value, type, var.pos, is_cdef = True)
self.__class__ = PassStatNode
def analyse_expressions(self, env):
self.expr.result_is_used = False # hint that .result() may safely be left empty
self.expr = self.expr.analyse_expressions(env)
return self
def nogil_check(self, env):
if self.expr.type.is_pyobject and self.expr.is_temp:
self.gil_error()
gil_message = "Discarding owned Python object"
def generate_execution_code(self, code):
self.expr.generate_evaluation_code(code)
if not self.expr.is_temp and self.expr.result():
code.putln("%s;" % self.expr.result())
self.expr.generate_disposal_code(code)
self.expr.free_temps(code)
def generate_function_definitions(self, env, code):
self.expr.generate_function_definitions(env, code)
def annotate(self, code):
self.expr.annotate(code)
class AssignmentNode(StatNode):
# Abstract base class for assignment nodes.
#
# The analyse_expressions and generate_execution_code
# phases of assignments are split into two sub-phases
# each, to enable all the right hand sides of a
# parallel assignment to be evaluated before assigning
# to any of the left hand sides.
def analyse_expressions(self, env):
return self.analyse_types(env)
# def analyse_expressions(self, env):
# self.analyse_expressions_1(env)
# self.analyse_expressions_2(env)
def generate_execution_code(self, code):
self.generate_rhs_evaluation_code(code)
self.generate_assignment_code(code)
class SingleAssignmentNode(AssignmentNode):
# The simplest case:
#
# a = b
#
# lhs ExprNode Left hand side
# rhs ExprNode Right hand side
# first bool Is this guaranteed the first assignment to lhs?
child_attrs = ["lhs", "rhs"]
first = False
declaration_only = False
def analyse_declarations(self, env):
import ExprNodes
# handle declarations of the form x = cython.foo()
if isinstance(self.rhs, ExprNodes.CallNode):
func_name = self.rhs.function.as_cython_attribute()
if func_name:
args, kwds = self.rhs.explicit_args_kwds()
if func_name in ['declare', 'typedef']:
if len(args) > 2 or kwds is not None:
error(self.rhs.pos, "Can only declare one type at a time.")
return
type = args[0].analyse_as_type(env)
if type is None:
error(args[0].pos, "Unknown type")
return
lhs = self.lhs
if func_name == 'declare':
if isinstance(lhs, ExprNodes.NameNode):
vars = [(lhs.name, lhs.pos)]
elif isinstance(lhs, ExprNodes.TupleNode):
vars = [(var.name, var.pos) for var in lhs.args]
else:
error(lhs.pos, "Invalid declaration")
return
for var, pos in vars:
env.declare_var(var, type, pos, is_cdef = True)
if len(args) == 2:
# we have a value
self.rhs = args[1]
else:
self.declaration_only = True
else:
self.declaration_only = True
if not isinstance(lhs, ExprNodes.NameNode):
error(lhs.pos, "Invalid declaration.")
env.declare_typedef(lhs.name, type, self.pos, visibility='private')
elif func_name in ['struct', 'union']:
self.declaration_only = True
if len(args) > 0 or kwds is None:
error(self.rhs.pos, "Struct or union members must be given by name.")
return
members = []
for member, type_node in kwds.key_value_pairs:
type = type_node.analyse_as_type(env)
if type is None:
error(type_node.pos, "Unknown type")
else:
members.append((member.value, type, member.pos))
if len(members) < len(kwds.key_value_pairs):
return
if not isinstance(self.lhs, ExprNodes.NameNode):
error(self.lhs.pos, "Invalid declaration.")
name = self.lhs.name
scope = StructOrUnionScope(name)
env.declare_struct_or_union(name, func_name, scope, False, self.rhs.pos)
for member, type, pos in members:
scope.declare_var(member, type, pos)
elif func_name == 'fused_type':
# dtype = cython.fused_type(...)
self.declaration_only = True
if kwds:
error(self.rhs.function.pos,
"fused_type does not take keyword arguments")
fusednode = FusedTypeNode(self.rhs.pos,
name = self.lhs.name, types=args)
fusednode.analyse_declarations(env)
if self.declaration_only:
return
else:
self.lhs.analyse_target_declaration(env)
def analyse_types(self, env, use_temp = 0):
import ExprNodes
self.rhs = self.rhs.analyse_types(env)
self.lhs = self.lhs.analyse_target_types(env)
self.lhs.gil_assignment_check(env)
if self.lhs.memslice_broadcast or self.rhs.memslice_broadcast:
self.lhs.memslice_broadcast = True
self.rhs.memslice_broadcast = True
is_index_node = isinstance(self.lhs, ExprNodes.IndexNode)
if (is_index_node and not self.rhs.type.is_memoryviewslice and
(self.lhs.memslice_slice or self.lhs.is_memslice_copy) and
(self.lhs.type.dtype.assignable_from(self.rhs.type) or
self.rhs.type.is_pyobject)):
# scalar slice assignment
self.lhs.is_memslice_scalar_assignment = True
dtype = self.lhs.type.dtype
else:
dtype = self.lhs.type
rhs = self.rhs.coerce_to(dtype, env)
if use_temp or rhs.is_attribute or (
not rhs.is_name and not rhs.is_literal and
rhs.type.is_pyobject):
# things like (cdef) attribute access are not safe (traverses pointers)
rhs = rhs.coerce_to_temp(env)
elif rhs.type.is_pyobject:
rhs = rhs.coerce_to_simple(env)
self.rhs = rhs
return self
def generate_rhs_evaluation_code(self, code):
self.rhs.generate_evaluation_code(code)
def generate_assignment_code(self, code):
self.lhs.generate_assignment_code(self.rhs, code)
def generate_function_definitions(self, env, code):
self.rhs.generate_function_definitions(env, code)
def annotate(self, code):
self.lhs.annotate(code)
self.rhs.annotate(code)
class CascadedAssignmentNode(AssignmentNode):
# An assignment with multiple left hand sides:
#
# a = b = c
#
# lhs_list [ExprNode] Left hand sides
# rhs ExprNode Right hand sides
#
# Used internally:
#
# coerced_rhs_list [ExprNode] RHS coerced to type of each LHS
child_attrs = ["lhs_list", "rhs", "coerced_rhs_list"]
coerced_rhs_list = None
def analyse_declarations(self, env):
for lhs in self.lhs_list:
lhs.analyse_target_declaration(env)
def analyse_types(self, env, use_temp = 0):
from ExprNodes import CloneNode, ProxyNode
rhs = self.rhs.analyse_types(env)
if use_temp or rhs.is_attribute or (
not rhs.is_name and not rhs.is_literal and
rhs.type.is_pyobject):
rhs = rhs.coerce_to_temp(env)
else:
rhs = rhs.coerce_to_simple(env)
self.rhs = ProxyNode(rhs)
self.coerced_rhs_list = []
for lhs in self.lhs_list:
lhs.analyse_target_types(env)
lhs.gil_assignment_check(env)
rhs = CloneNode(self.rhs)
rhs = rhs.coerce_to(lhs.type, env)
self.coerced_rhs_list.append(rhs)
return self
def generate_rhs_evaluation_code(self, code):
self.rhs.generate_evaluation_code(code)
def generate_assignment_code(self, code):
for i in range(len(self.lhs_list)):
lhs = self.lhs_list[i]
rhs = self.coerced_rhs_list[i]
rhs.generate_evaluation_code(code)
lhs.generate_assignment_code(rhs, code)
# Assignment has disposed of the cloned RHS
self.rhs.generate_disposal_code(code)
self.rhs.free_temps(code)
def generate_function_definitions(self, env, code):
self.rhs.generate_function_definitions(env, code)
def annotate(self, code):
for i in range(len(self.lhs_list)):
self.lhs_list[i].annotate(code)
self.coerced_rhs_list[i].annotate(code)
self.rhs.annotate(code)
class ParallelAssignmentNode(AssignmentNode):
# A combined packing/unpacking assignment:
#
# a, b, c = d, e, f
#
# This has been rearranged by the parser into
#
# a = d ; b = e ; c = f
#
# but we must evaluate all the right hand sides
# before assigning to any of the left hand sides.
#
# stats [AssignmentNode] The constituent assignments
child_attrs = ["stats"]
def analyse_declarations(self, env):
for stat in self.stats:
stat.analyse_declarations(env)
def analyse_expressions(self, env):
self.stats = [ stat.analyse_types(env, use_temp = 1)
for stat in self.stats ]
return self
# def analyse_expressions(self, env):
# for stat in self.stats:
# stat.analyse_expressions_1(env, use_temp = 1)
# for stat in self.stats:
# stat.analyse_expressions_2(env)
def generate_execution_code(self, code):
for stat in self.stats:
stat.generate_rhs_evaluation_code(code)
for stat in self.stats:
stat.generate_assignment_code(code)
def generate_function_definitions(self, env, code):
for stat in self.stats:
stat.generate_function_definitions(env, code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)
class InPlaceAssignmentNode(AssignmentNode):
# An in place arithmetic operand:
#
# a += b
# a -= b
# ...
#
# lhs ExprNode Left hand side
# rhs ExprNode Right hand side
# operator char one of "+-*/%^&|"
#
# This code is a bit tricky because in order to obey Python
# semantics the sub-expressions (e.g. indices) of the lhs must
# not be evaluated twice. So we must re-use the values calculated
# in evaluation phase for the assignment phase as well.
# Fortunately, the type of the lhs node is fairly constrained
# (it must be a NameNode, AttributeNode, or IndexNode).
child_attrs = ["lhs", "rhs"]
def analyse_declarations(self, env):
self.lhs.analyse_target_declaration(env)
def analyse_types(self, env):
self.rhs = self.rhs.analyse_types(env)
self.lhs = self.lhs.analyse_target_types(env)
# When assigning to a fully indexed buffer or memoryview, coerce the rhs
if (self.lhs.is_subscript and
(self.lhs.memslice_index or self.lhs.is_buffer_access)):
self.rhs = self.rhs.coerce_to(self.lhs.type, env)
elif self.lhs.type.is_string and self.operator in '+-':
# use pointer arithmetic for char* LHS instead of string concat
self.rhs = self.rhs.coerce_to(PyrexTypes.c_py_ssize_t_type, env)
return self
def generate_execution_code(self, code):
self.rhs.generate_evaluation_code(code)
self.lhs.generate_subexpr_evaluation_code(code)
c_op = self.operator
if c_op == "//":
c_op = "/"
elif c_op == "**":
error(self.pos, "No C inplace power operator")
if self.lhs.is_subscript and self.lhs.is_buffer_access:
if self.lhs.type.is_pyobject:
error(self.pos, "In-place operators not allowed on object buffers in this release.")
if (c_op in ('/', '%') and self.lhs.type.is_int
and not code.globalstate.directives['cdivision']):
error(self.pos, "In-place non-c divide operators not allowed on int buffers.")
self.lhs.generate_buffer_setitem_code(self.rhs, code, c_op)
else:
# C++
# TODO: make sure overload is declared
code.putln("%s %s= %s;" % (self.lhs.result(), c_op, self.rhs.result()))
self.lhs.generate_subexpr_disposal_code(code)
self.lhs.free_subexpr_temps(code)
self.rhs.generate_disposal_code(code)
self.rhs.free_temps(code)
def annotate(self, code):
self.lhs.annotate(code)
self.rhs.annotate(code)
def create_binop_node(self):
import ExprNodes
return ExprNodes.binop_node(self.pos, self.operator, self.lhs, self.rhs)
class PrintStatNode(StatNode):
# print statement
#
# arg_tuple TupleNode
# stream ExprNode or None (stdout)
# append_newline boolean
child_attrs = ["arg_tuple", "stream"]
def analyse_expressions(self, env):
if self.stream:
stream = self.stream.analyse_expressions(env)
self.stream = stream.coerce_to_pyobject(env)
arg_tuple = self.arg_tuple.analyse_expressions(env)
self.arg_tuple = arg_tuple.coerce_to_pyobject(env)
env.use_utility_code(printing_utility_code)
if len(self.arg_tuple.args) == 1 and self.append_newline:
env.use_utility_code(printing_one_utility_code)
return self
nogil_check = Node.gil_error
gil_message = "Python print statement"
def generate_execution_code(self, code):
if self.stream:
self.stream.generate_evaluation_code(code)
stream_result = self.stream.py_result()
else:
stream_result = '0'
if len(self.arg_tuple.args) == 1 and self.append_newline:
arg = self.arg_tuple.args[0]
arg.generate_evaluation_code(code)
code.putln(
"if (__Pyx_PrintOne(%s, %s) < 0) %s" % (
stream_result,
arg.py_result(),
code.error_goto(self.pos)))
arg.generate_disposal_code(code)
arg.free_temps(code)
else:
self.arg_tuple.generate_evaluation_code(code)
code.putln(
"if (__Pyx_Print(%s, %s, %d) < 0) %s" % (
stream_result,
self.arg_tuple.py_result(),
self.append_newline,
code.error_goto(self.pos)))
self.arg_tuple.generate_disposal_code(code)
self.arg_tuple.free_temps(code)
if self.stream:
self.stream.generate_disposal_code(code)
self.stream.free_temps(code)
def generate_function_definitions(self, env, code):
if self.stream:
self.stream.generate_function_definitions(env, code)
self.arg_tuple.generate_function_definitions(env, code)
def annotate(self, code):
if self.stream:
self.stream.annotate(code)
self.arg_tuple.annotate(code)
class ExecStatNode(StatNode):
# exec statement
#
# args [ExprNode]
child_attrs = ["args"]
def analyse_expressions(self, env):
for i, arg in enumerate(self.args):
arg = arg.analyse_expressions(env)
arg = arg.coerce_to_pyobject(env)
self.args[i] = arg
env.use_utility_code(Builtin.pyexec_utility_code)
return self
nogil_check = Node.gil_error
gil_message = "Python exec statement"
def generate_execution_code(self, code):
args = []
for arg in self.args:
arg.generate_evaluation_code(code)
args.append( arg.py_result() )
args = tuple(args + ['0', '0'][:3-len(args)])
temp_result = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True)
code.putln("%s = __Pyx_PyExec3(%s, %s, %s);" % (
(temp_result,) + args))
for arg in self.args:
arg.generate_disposal_code(code)
arg.free_temps(code)
code.putln(
code.error_goto_if_null(temp_result, self.pos))
code.put_gotref(temp_result)
code.put_decref_clear(temp_result, py_object_type)
code.funcstate.release_temp(temp_result)
def annotate(self, code):
for arg in self.args:
arg.annotate(code)
class DelStatNode(StatNode):
# del statement
#
# args [ExprNode]
child_attrs = ["args"]
ignore_nonexisting = False
def analyse_declarations(self, env):
for arg in self.args:
arg.analyse_target_declaration(env)
def analyse_expressions(self, env):
for i, arg in enumerate(self.args):
arg = self.args[i] = arg.analyse_target_expression(env, None)
if arg.type.is_pyobject or (arg.is_name and
arg.type.is_memoryviewslice):
if arg.is_name and arg.entry.is_cglobal:
error(arg.pos, "Deletion of global C variable")
elif arg.type.is_ptr and arg.type.base_type.is_cpp_class:
self.cpp_check(env)
elif arg.type.is_cpp_class:
error(arg.pos, "Deletion of non-heap C++ object")
elif arg.is_subscript and arg.base.type is Builtin.bytearray_type:
pass # del ba[i]
else:
error(arg.pos, "Deletion of non-Python, non-C++ object")
#arg.release_target_temp(env)
return self
def nogil_check(self, env):
for arg in self.args:
if arg.type.is_pyobject:
self.gil_error()
gil_message = "Deleting Python object"
def generate_execution_code(self, code):
for arg in self.args:
if (arg.type.is_pyobject or
arg.type.is_memoryviewslice or
arg.is_subscript and arg.base.type is Builtin.bytearray_type):
arg.generate_deletion_code(
code, ignore_nonexisting=self.ignore_nonexisting)
elif arg.type.is_ptr and arg.type.base_type.is_cpp_class:
arg.generate_result_code(code)
code.putln("delete %s;" % arg.result())
# else error reported earlier
def annotate(self, code):
for arg in self.args:
arg.annotate(code)
class PassStatNode(StatNode):
# pass statement
child_attrs = []
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class IndirectionNode(StatListNode):
"""
This adds an indirection so that the node can be shared and a subtree can
be removed at any time by clearing self.stats.
"""
def __init__(self, stats):
super(IndirectionNode, self).__init__(stats[0].pos, stats=stats)
class BreakStatNode(StatNode):
child_attrs = []
is_terminator = True
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
if not code.break_label:
error(self.pos, "break statement not inside loop")
else:
code.put_goto(code.break_label)
class ContinueStatNode(StatNode):
child_attrs = []
is_terminator = True
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
if code.funcstate.in_try_finally:
error(self.pos, "continue statement inside try of try...finally")
elif not code.continue_label:
error(self.pos, "continue statement not inside loop")
else:
code.put_goto(code.continue_label)
class ReturnStatNode(StatNode):
# return statement
#
# value ExprNode or None
# return_type PyrexType
# in_generator return inside of generator => raise StopIteration
child_attrs = ["value"]
is_terminator = True
in_generator = False
# Whether we are in a parallel section
in_parallel = False
def analyse_expressions(self, env):
return_type = env.return_type
self.return_type = return_type
if not return_type:
error(self.pos, "Return not inside a function body")
return self
if self.value:
self.value = self.value.analyse_types(env)
if return_type.is_void or return_type.is_returncode:
error(self.value.pos,
"Return with value in void function")
else:
self.value = self.value.coerce_to(env.return_type, env)
else:
if (not return_type.is_void
and not return_type.is_pyobject
and not return_type.is_returncode):
error(self.pos, "Return value required")
return self
def nogil_check(self, env):
if self.return_type.is_pyobject:
self.gil_error()
gil_message = "Returning Python object"
def generate_execution_code(self, code):
code.mark_pos(self.pos)
if not self.return_type:
# error reported earlier
return
if self.return_type.is_pyobject:
code.put_xdecref(Naming.retval_cname,
self.return_type)
if self.value:
self.value.generate_evaluation_code(code)
if self.return_type.is_memoryviewslice:
import MemoryView
MemoryView.put_acquire_memoryviewslice(
lhs_cname=Naming.retval_cname,
lhs_type=self.return_type,
lhs_pos=self.value.pos,
rhs=self.value,
code=code,
have_gil=self.in_nogil_context)
elif self.in_generator:
# return value == raise StopIteration(value), but uncatchable
code.putln(
"%s = NULL; PyErr_SetObject(PyExc_StopIteration, %s);" % (
Naming.retval_cname,
self.value.result_as(self.return_type)))
self.value.generate_disposal_code(code)
else:
self.value.make_owned_reference(code)
code.putln(
"%s = %s;" % (
Naming.retval_cname,
self.value.result_as(self.return_type)))
self.value.generate_post_assignment_code(code)
self.value.free_temps(code)
else:
if self.return_type.is_pyobject:
code.put_init_to_py_none(Naming.retval_cname, self.return_type)
elif self.return_type.is_returncode:
self.put_return(code, self.return_type.default_value)
for cname, type in code.funcstate.temps_holding_reference():
code.put_decref_clear(cname, type)
code.put_goto(code.return_label)
def put_return(self, code, value):
if self.in_parallel:
code.putln_openmp("#pragma omp critical(__pyx_returning)")
code.putln("%s = %s;" % (Naming.retval_cname, value))
def generate_function_definitions(self, env, code):
if self.value is not None:
self.value.generate_function_definitions(env, code)
def annotate(self, code):
if self.value:
self.value.annotate(code)
class RaiseStatNode(StatNode):
# raise statement
#
# exc_type ExprNode or None
# exc_value ExprNode or None
# exc_tb ExprNode or None
# cause ExprNode or None
child_attrs = ["exc_type", "exc_value", "exc_tb", "cause"]
is_terminator = True
def analyse_expressions(self, env):
if self.exc_type:
exc_type = self.exc_type.analyse_types(env)
self.exc_type = exc_type.coerce_to_pyobject(env)
if self.exc_value:
exc_value = self.exc_value.analyse_types(env)
self.exc_value = exc_value.coerce_to_pyobject(env)
if self.exc_tb:
exc_tb = self.exc_tb.analyse_types(env)
self.exc_tb = exc_tb.coerce_to_pyobject(env)
if self.cause:
cause = self.cause.analyse_types(env)
self.cause = cause.coerce_to_pyobject(env)
# special cases for builtin exceptions
self.builtin_exc_name = None
if self.exc_type and not self.exc_value and not self.exc_tb:
exc = self.exc_type
import ExprNodes
if (isinstance(exc, ExprNodes.SimpleCallNode) and
not (exc.args or (exc.arg_tuple is not None and
exc.arg_tuple.args))):
exc = exc.function # extract the exception type
if exc.is_name and exc.entry.is_builtin:
self.builtin_exc_name = exc.name
if self.builtin_exc_name == 'MemoryError':
self.exc_type = None # has a separate implementation
return self
nogil_check = Node.gil_error
gil_message = "Raising exception"
def generate_execution_code(self, code):
if self.builtin_exc_name == 'MemoryError':
code.putln('PyErr_NoMemory(); %s' % code.error_goto(self.pos))
return
if self.exc_type:
self.exc_type.generate_evaluation_code(code)
type_code = self.exc_type.py_result()
else:
type_code = "0"
if self.exc_value:
self.exc_value.generate_evaluation_code(code)
value_code = self.exc_value.py_result()
else:
value_code = "0"
if self.exc_tb:
self.exc_tb.generate_evaluation_code(code)
tb_code = self.exc_tb.py_result()
else:
tb_code = "0"
if self.cause:
self.cause.generate_evaluation_code(code)
cause_code = self.cause.py_result()
else:
cause_code = "0"
code.globalstate.use_utility_code(raise_utility_code)
code.putln(
"__Pyx_Raise(%s, %s, %s, %s);" % (
type_code,
value_code,
tb_code,
cause_code))
for obj in (self.exc_type, self.exc_value, self.exc_tb, self.cause):
if obj:
obj.generate_disposal_code(code)
obj.free_temps(code)
code.putln(
code.error_goto(self.pos))
def generate_function_definitions(self, env, code):
if self.exc_type is not None:
self.exc_type.generate_function_definitions(env, code)
if self.exc_value is not None:
self.exc_value.generate_function_definitions(env, code)
if self.exc_tb is not None:
self.exc_tb.generate_function_definitions(env, code)
if self.cause is not None:
self.cause.generate_function_definitions(env, code)
def annotate(self, code):
if self.exc_type:
self.exc_type.annotate(code)
if self.exc_value:
self.exc_value.annotate(code)
if self.exc_tb:
self.exc_tb.annotate(code)
if self.cause:
self.cause.annotate(code)
class ReraiseStatNode(StatNode):
child_attrs = []
is_terminator = True
def analyse_expressions(self, env):
return self
nogil_check = Node.gil_error
gil_message = "Raising exception"
def generate_execution_code(self, code):
vars = code.funcstate.exc_vars
if vars:
code.globalstate.use_utility_code(restore_exception_utility_code)
code.put_giveref(vars[0])
code.put_giveref(vars[1])
# fresh exceptions may not have a traceback yet (-> finally!)
code.put_xgiveref(vars[2])
code.putln("__Pyx_ErrRestore(%s, %s, %s);" % tuple(vars))
for varname in vars:
code.put("%s = 0; " % varname)
code.putln()
code.putln(code.error_goto(self.pos))
else:
code.globalstate.use_utility_code(
UtilityCode.load_cached("ReRaiseException", "Exceptions.c"))
code.putln("__Pyx_ReraiseException(); %s" % code.error_goto(self.pos))
class AssertStatNode(StatNode):
# assert statement
#
# cond ExprNode
# value ExprNode or None
child_attrs = ["cond", "value"]
def analyse_expressions(self, env):
self.cond = self.cond.analyse_boolean_expression(env)
if self.value:
value = self.value.analyse_types(env)
if value.type is Builtin.tuple_type or not value.type.is_builtin_type:
# prevent tuple values from being interpreted as argument value tuples
from ExprNodes import TupleNode
value = TupleNode(value.pos, args=[value], slow=True)
self.value = value.analyse_types(env, skip_children=True)
else:
self.value = value.coerce_to_pyobject(env)
return self
nogil_check = Node.gil_error
gil_message = "Raising exception"
def generate_execution_code(self, code):
code.putln("#ifndef CYTHON_WITHOUT_ASSERTIONS")
code.putln("if (unlikely(!Py_OptimizeFlag)) {")
self.cond.generate_evaluation_code(code)
code.putln(
"if (unlikely(!%s)) {" %
self.cond.result())
if self.value:
self.value.generate_evaluation_code(code)
code.putln(
"PyErr_SetObject(PyExc_AssertionError, %s);" %
self.value.py_result())
self.value.generate_disposal_code(code)
self.value.free_temps(code)
else:
code.putln(
"PyErr_SetNone(PyExc_AssertionError);")
code.putln(
code.error_goto(self.pos))
code.putln(
"}")
self.cond.generate_disposal_code(code)
self.cond.free_temps(code)
code.putln(
"}")
code.putln("#endif")
def generate_function_definitions(self, env, code):
self.cond.generate_function_definitions(env, code)
if self.value is not None:
self.value.generate_function_definitions(env, code)
def annotate(self, code):
self.cond.annotate(code)
if self.value:
self.value.annotate(code)
class IfStatNode(StatNode):
# if statement
#
# if_clauses [IfClauseNode]
# else_clause StatNode or None
child_attrs = ["if_clauses", "else_clause"]
def analyse_declarations(self, env):
for if_clause in self.if_clauses:
if_clause.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
def analyse_expressions(self, env):
self.if_clauses = [ if_clause.analyse_expressions(env)
for if_clause in self.if_clauses ]
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
def generate_execution_code(self, code):
code.mark_pos(self.pos)
end_label = code.new_label()
for if_clause in self.if_clauses:
if_clause.generate_execution_code(code, end_label)
if self.else_clause:
code.putln("/*else*/ {")
self.else_clause.generate_execution_code(code)
code.putln("}")
code.put_label(end_label)
def generate_function_definitions(self, env, code):
for clause in self.if_clauses:
clause.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
for if_clause in self.if_clauses:
if_clause.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
class IfClauseNode(Node):
# if or elif clause in an if statement
#
# condition ExprNode
# body StatNode
child_attrs = ["condition", "body"]
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
def analyse_expressions(self, env):
self.condition = \
self.condition.analyse_temp_boolean_expression(env)
self.body = self.body.analyse_expressions(env)
return self
def generate_execution_code(self, code, end_label):
self.condition.generate_evaluation_code(code)
code.putln(
"if (%s) {" %
self.condition.result())
self.condition.generate_disposal_code(code)
self.condition.free_temps(code)
self.body.generate_execution_code(code)
if not self.body.is_terminator:
code.put_goto(end_label)
code.putln("}")
def generate_function_definitions(self, env, code):
self.condition.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
def annotate(self, code):
self.condition.annotate(code)
self.body.annotate(code)
class SwitchCaseNode(StatNode):
# Generated in the optimization of an if-elif-else node
#
# conditions [ExprNode]
# body StatNode
child_attrs = ['conditions', 'body']
def generate_execution_code(self, code):
for cond in self.conditions:
code.mark_pos(cond.pos)
cond.generate_evaluation_code(code)
code.putln("case %s:" % cond.result())
self.body.generate_execution_code(code)
code.putln("break;")
def generate_function_definitions(self, env, code):
for cond in self.conditions:
cond.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
def annotate(self, code):
for cond in self.conditions:
cond.annotate(code)
self.body.annotate(code)
class SwitchStatNode(StatNode):
# Generated in the optimization of an if-elif-else node
#
# test ExprNode
# cases [SwitchCaseNode]
# else_clause StatNode or None
child_attrs = ['test', 'cases', 'else_clause']
def generate_execution_code(self, code):
self.test.generate_evaluation_code(code)
code.putln("switch (%s) {" % self.test.result())
for case in self.cases:
case.generate_execution_code(code)
if self.else_clause is not None:
code.putln("default:")
self.else_clause.generate_execution_code(code)
code.putln("break;")
else:
# Always generate a default clause to prevent C compiler warnings
# about unmatched enum values (it was not the user who decided to
# generate the switch statement, so shouldn't be bothered).
code.putln("default: break;")
code.putln("}")
def generate_function_definitions(self, env, code):
self.test.generate_function_definitions(env, code)
for case in self.cases:
case.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
self.test.annotate(code)
for case in self.cases:
case.annotate(code)
if self.else_clause is not None:
self.else_clause.annotate(code)
class LoopNode(object):
pass
class WhileStatNode(LoopNode, StatNode):
# while statement
#
# condition ExprNode
# body StatNode
# else_clause StatNode
child_attrs = ["condition", "body", "else_clause"]
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
def analyse_expressions(self, env):
if self.condition:
self.condition = self.condition.analyse_temp_boolean_expression(env)
self.body = self.body.analyse_expressions(env)
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
def generate_execution_code(self, code):
old_loop_labels = code.new_loop_labels()
code.putln(
"while (1) {")
if self.condition:
self.condition.generate_evaluation_code(code)
self.condition.generate_disposal_code(code)
code.putln(
"if (!%s) break;" %
self.condition.result())
self.condition.free_temps(code)
self.body.generate_execution_code(code)
code.put_label(code.continue_label)
code.putln("}")
break_label = code.break_label
code.set_loop_labels(old_loop_labels)
if self.else_clause:
code.mark_pos(self.else_clause.pos)
code.putln("/*else*/ {")
self.else_clause.generate_execution_code(code)
code.putln("}")
code.put_label(break_label)
def generate_function_definitions(self, env, code):
if self.condition:
self.condition.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
if self.condition:
self.condition.annotate(code)
self.body.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
class DictIterationNextNode(Node):
# Helper node for calling PyDict_Next() inside of a WhileStatNode
# and checking the dictionary size for changes. Created in
# Optimize.py.
child_attrs = ['dict_obj', 'expected_size', 'pos_index_var',
'coerced_key_var', 'coerced_value_var', 'coerced_tuple_var',
'key_target', 'value_target', 'tuple_target', 'is_dict_flag']
coerced_key_var = key_ref = None
coerced_value_var = value_ref = None
coerced_tuple_var = tuple_ref = None
def __init__(self, dict_obj, expected_size, pos_index_var,
key_target, value_target, tuple_target, is_dict_flag):
Node.__init__(
self, dict_obj.pos,
dict_obj = dict_obj,
expected_size = expected_size,
pos_index_var = pos_index_var,
key_target = key_target,
value_target = value_target,
tuple_target = tuple_target,
is_dict_flag = is_dict_flag,
is_temp = True,
type = PyrexTypes.c_bint_type)
def analyse_expressions(self, env):
import ExprNodes
self.dict_obj = self.dict_obj.analyse_types(env)
self.expected_size = self.expected_size.analyse_types(env)
if self.pos_index_var:
self.pos_index_var = self.pos_index_var.analyse_types(env)
if self.key_target:
self.key_target = self.key_target.analyse_target_types(env)
self.key_ref = ExprNodes.TempNode(self.key_target.pos, PyrexTypes.py_object_type)
self.coerced_key_var = self.key_ref.coerce_to(self.key_target.type, env)
if self.value_target:
self.value_target = self.value_target.analyse_target_types(env)
self.value_ref = ExprNodes.TempNode(self.value_target.pos, type=PyrexTypes.py_object_type)
self.coerced_value_var = self.value_ref.coerce_to(self.value_target.type, env)
if self.tuple_target:
self.tuple_target = self.tuple_target.analyse_target_types(env)
self.tuple_ref = ExprNodes.TempNode(self.tuple_target.pos, PyrexTypes.py_object_type)
self.coerced_tuple_var = self.tuple_ref.coerce_to(self.tuple_target.type, env)
self.is_dict_flag = self.is_dict_flag.analyse_types(env)
return self
def generate_function_definitions(self, env, code):
self.dict_obj.generate_function_definitions(env, code)
def generate_execution_code(self, code):
code.globalstate.use_utility_code(UtilityCode.load_cached("dict_iter", "Optimize.c"))
self.dict_obj.generate_evaluation_code(code)
assignments = []
temp_addresses = []
for var, result, target in [(self.key_ref, self.coerced_key_var, self.key_target),
(self.value_ref, self.coerced_value_var, self.value_target),
(self.tuple_ref, self.coerced_tuple_var, self.tuple_target)]:
if target is None:
addr = 'NULL'
else:
assignments.append((var, result, target))
var.allocate(code)
addr = '&%s' % var.result()
temp_addresses.append(addr)
result_temp = code.funcstate.allocate_temp(PyrexTypes.c_int_type, False)
code.putln("%s = __Pyx_dict_iter_next(%s, %s, &%s, %s, %s, %s, %s);" % (
result_temp,
self.dict_obj.py_result(),
self.expected_size.result(),
self.pos_index_var.result(),
temp_addresses[0],
temp_addresses[1],
temp_addresses[2],
self.is_dict_flag.result()
))
code.putln("if (unlikely(%s == 0)) break;" % result_temp)
code.putln(code.error_goto_if("%s == -1" % result_temp, self.pos))
code.funcstate.release_temp(result_temp)
# evaluate all coercions before the assignments
for var, result, target in assignments:
code.put_gotref(var.result())
for var, result, target in assignments:
result.generate_evaluation_code(code)
for var, result, target in assignments:
target.generate_assignment_code(result, code)
var.release(code)
def ForStatNode(pos, **kw):
if 'iterator' in kw:
return ForInStatNode(pos, **kw)
else:
return ForFromStatNode(pos, **kw)
class ForInStatNode(LoopNode, StatNode):
# for statement
#
# target ExprNode
# iterator IteratorNode
# body StatNode
# else_clause StatNode
# item NextNode used internally
child_attrs = ["target", "iterator", "body", "else_clause"]
item = None
def analyse_declarations(self, env):
import ExprNodes
self.target.analyse_target_declaration(env)
self.body.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
self.item = ExprNodes.NextNode(self.iterator)
def analyse_expressions(self, env):
self.target = self.target.analyse_target_types(env)
self.iterator = self.iterator.analyse_expressions(env)
import ExprNodes
self.item = ExprNodes.NextNode(self.iterator) # must rewrap after analysis
self.item = self.item.analyse_expressions(env)
if (self.iterator.type.is_ptr or self.iterator.type.is_array) and \
self.target.type.assignable_from(self.iterator.type):
# C array slice optimization.
pass
else:
self.item = self.item.coerce_to(self.target.type, env)
self.body = self.body.analyse_expressions(env)
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
def generate_execution_code(self, code):
old_loop_labels = code.new_loop_labels()
self.iterator.generate_evaluation_code(code)
code.putln("for (;;) {")
self.item.generate_evaluation_code(code)
self.target.generate_assignment_code(self.item, code)
self.body.generate_execution_code(code)
code.put_label(code.continue_label)
code.putln("}")
break_label = code.break_label
code.set_loop_labels(old_loop_labels)
if self.else_clause:
# in nested loops, the 'else' block can contain a
# 'continue' statement for the outer loop, but we may need
# to generate cleanup code before taking that path, so we
# intercept it here
orig_continue_label = code.continue_label
code.continue_label = code.new_label('outer_continue')
code.putln("/*else*/ {")
self.else_clause.generate_execution_code(code)
code.putln("}")
if code.label_used(code.continue_label):
code.put_goto(break_label)
code.put_label(code.continue_label)
self.iterator.generate_disposal_code(code)
code.put_goto(orig_continue_label)
code.set_loop_labels(old_loop_labels)
if code.label_used(break_label):
code.put_label(break_label)
self.iterator.generate_disposal_code(code)
self.iterator.free_temps(code)
def generate_function_definitions(self, env, code):
self.target.generate_function_definitions(env, code)
self.iterator.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
self.target.annotate(code)
self.iterator.annotate(code)
self.body.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
self.item.annotate(code)
class ForFromStatNode(LoopNode, StatNode):
# for name from expr rel name rel expr
#
# target NameNode
# bound1 ExprNode
# relation1 string
# relation2 string
# bound2 ExprNode
# step ExprNode or None
# body StatNode
# else_clause StatNode or None
#
# Used internally:
#
# from_range bool
# is_py_target bool
# loopvar_node ExprNode (usually a NameNode or temp node)
# py_loopvar_node PyTempNode or None
child_attrs = ["target", "bound1", "bound2", "step", "body", "else_clause"]
is_py_target = False
loopvar_node = None
py_loopvar_node = None
from_range = False
gil_message = "For-loop using object bounds or target"
def nogil_check(self, env):
for x in (self.target, self.bound1, self.bound2):
if x.type.is_pyobject:
self.gil_error()
def analyse_declarations(self, env):
self.target.analyse_target_declaration(env)
self.body.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
def analyse_expressions(self, env):
import ExprNodes
self.target = self.target.analyse_target_types(env)
self.bound1 = self.bound1.analyse_types(env)
self.bound2 = self.bound2.analyse_types(env)
if self.step is not None:
if isinstance(self.step, ExprNodes.UnaryMinusNode):
warning(self.step.pos, "Probable infinite loop in for-from-by statement. Consider switching the directions of the relations.", 2)
self.step = self.step.analyse_types(env)
if self.target.type.is_numeric:
loop_type = self.target.type
else:
loop_type = PyrexTypes.c_int_type
if not self.bound1.type.is_pyobject:
loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound1.type)
if not self.bound2.type.is_pyobject:
loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound2.type)
if self.step is not None and not self.step.type.is_pyobject:
loop_type = PyrexTypes.widest_numeric_type(loop_type, self.step.type)
self.bound1 = self.bound1.coerce_to(loop_type, env)
self.bound2 = self.bound2.coerce_to(loop_type, env)
if not self.bound2.is_literal:
self.bound2 = self.bound2.coerce_to_temp(env)
if self.step is not None:
self.step = self.step.coerce_to(loop_type, env)
if not self.step.is_literal:
self.step = self.step.coerce_to_temp(env)
target_type = self.target.type
if not (target_type.is_pyobject or target_type.is_numeric):
error(self.target.pos,
"for-from loop variable must be c numeric type or Python object")
if target_type.is_numeric:
self.is_py_target = False
if isinstance(self.target, ExprNodes.IndexNode) and self.target.is_buffer_access:
raise error(self.pos, "Buffer indexing not allowed as for loop target.")
self.loopvar_node = self.target
self.py_loopvar_node = None
else:
self.is_py_target = True
c_loopvar_node = ExprNodes.TempNode(self.pos, loop_type, env)
self.loopvar_node = c_loopvar_node
self.py_loopvar_node = \
ExprNodes.CloneNode(c_loopvar_node).coerce_to_pyobject(env)
self.body = self.body.analyse_expressions(env)
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
def generate_execution_code(self, code):
old_loop_labels = code.new_loop_labels()
from_range = self.from_range
self.bound1.generate_evaluation_code(code)
self.bound2.generate_evaluation_code(code)
offset, incop = self.relation_table[self.relation1]
if self.step is not None:
self.step.generate_evaluation_code(code)
step = self.step.result()
incop = "%s=%s" % (incop[0], step)
import ExprNodes
if isinstance(self.loopvar_node, ExprNodes.TempNode):
self.loopvar_node.allocate(code)
if isinstance(self.py_loopvar_node, ExprNodes.TempNode):
self.py_loopvar_node.allocate(code)
if from_range:
loopvar_name = code.funcstate.allocate_temp(self.target.type, False)
else:
loopvar_name = self.loopvar_node.result()
code.putln(
"for (%s = %s%s; %s %s %s; %s%s) {" % (
loopvar_name,
self.bound1.result(), offset,
loopvar_name, self.relation2, self.bound2.result(),
loopvar_name, incop))
if self.py_loopvar_node:
self.py_loopvar_node.generate_evaluation_code(code)
self.target.generate_assignment_code(self.py_loopvar_node, code)
elif from_range:
code.putln("%s = %s;" % (
self.target.result(), loopvar_name))
self.body.generate_execution_code(code)
code.put_label(code.continue_label)
if self.py_loopvar_node:
# This mess is to make for..from loops with python targets behave
# exactly like those with C targets with regards to re-assignment
# of the loop variable.
import ExprNodes
if self.target.entry.is_pyglobal:
# We know target is a NameNode, this is the only ugly case.
target_node = ExprNodes.PyTempNode(self.target.pos, None)
target_node.allocate(code)
interned_cname = code.intern_identifier(self.target.entry.name)
if self.target.entry.scope.is_module_scope:
code.globalstate.use_utility_code(
UtilityCode.load_cached("GetModuleGlobalName", "ObjectHandling.c"))
lookup_func = '__Pyx_GetModuleGlobalName(%s)'
else:
code.globalstate.use_utility_code(
UtilityCode.load_cached("GetNameInClass", "ObjectHandling.c"))
lookup_func = '__Pyx_GetNameInClass(%s, %%s)' % (
self.target.entry.scope.namespace_cname)
code.putln("%s = %s; %s" % (
target_node.result(),
lookup_func % interned_cname,
code.error_goto_if_null(target_node.result(), self.target.pos)))
code.put_gotref(target_node.result())
else:
target_node = self.target
from_py_node = ExprNodes.CoerceFromPyTypeNode(
self.loopvar_node.type, target_node, self.target.entry.scope)
from_py_node.temp_code = loopvar_name
from_py_node.generate_result_code(code)
if self.target.entry.is_pyglobal:
code.put_decref(target_node.result(), target_node.type)
target_node.release(code)
code.putln("}")
if self.py_loopvar_node:
# This is potentially wasteful, but we don't want the semantics to
# depend on whether or not the loop is a python type.
self.py_loopvar_node.generate_evaluation_code(code)
self.target.generate_assignment_code(self.py_loopvar_node, code)
if from_range:
code.funcstate.release_temp(loopvar_name)
break_label = code.break_label
code.set_loop_labels(old_loop_labels)
if self.else_clause:
code.putln("/*else*/ {")
self.else_clause.generate_execution_code(code)
code.putln("}")
code.put_label(break_label)
self.bound1.generate_disposal_code(code)
self.bound1.free_temps(code)
self.bound2.generate_disposal_code(code)
self.bound2.free_temps(code)
if isinstance(self.loopvar_node, ExprNodes.TempNode):
self.loopvar_node.release(code)
if isinstance(self.py_loopvar_node, ExprNodes.TempNode):
self.py_loopvar_node.release(code)
if self.step is not None:
self.step.generate_disposal_code(code)
self.step.free_temps(code)
relation_table = {
# {relop : (initial offset, increment op)}
'<=': ("", "++"),
'<' : ("+1", "++"),
'>=': ("", "--"),
'>' : ("-1", "--")
}
def generate_function_definitions(self, env, code):
self.target.generate_function_definitions(env, code)
self.bound1.generate_function_definitions(env, code)
self.bound2.generate_function_definitions(env, code)
if self.step is not None:
self.step.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
self.target.annotate(code)
self.bound1.annotate(code)
self.bound2.annotate(code)
if self.step:
self.step.annotate(code)
self.body.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
class WithStatNode(StatNode):
"""
Represents a Python with statement.
Implemented by the WithTransform as follows:
MGR = EXPR
EXIT = MGR.__exit__
VALUE = MGR.__enter__()
EXC = True
try:
try:
TARGET = VALUE # optional
BODY
except:
EXC = False
if not EXIT(*EXCINFO):
raise
finally:
if EXC:
EXIT(None, None, None)
MGR = EXIT = VALUE = None
"""
# manager The with statement manager object
# target ExprNode the target lhs of the __enter__() call
# body StatNode
# enter_call ExprNode the call to the __enter__() method
# exit_var String the cname of the __exit__() method reference
child_attrs = ["manager", "enter_call", "target", "body"]
enter_call = None
def analyse_declarations(self, env):
self.manager.analyse_declarations(env)
self.enter_call.analyse_declarations(env)
self.body.analyse_declarations(env)
def analyse_expressions(self, env):
self.manager = self.manager.analyse_types(env)
self.enter_call = self.enter_call.analyse_types(env)
self.body = self.body.analyse_expressions(env)
return self
def generate_function_definitions(self, env, code):
self.manager.generate_function_definitions(env, code)
self.enter_call.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
def generate_execution_code(self, code):
code.putln("/*with:*/ {")
self.manager.generate_evaluation_code(code)
self.exit_var = code.funcstate.allocate_temp(py_object_type, manage_ref=False)
code.globalstate.use_utility_code(
UtilityCode.load_cached("PyObjectLookupSpecial", "ObjectHandling.c"))
code.putln("%s = __Pyx_PyObject_LookupSpecial(%s, %s); %s" % (
self.exit_var,
self.manager.py_result(),
code.intern_identifier(EncodedString('__exit__')),
code.error_goto_if_null(self.exit_var, self.pos),
))
code.put_gotref(self.exit_var)
# need to free exit_var in the face of exceptions during setup
old_error_label = code.new_error_label()
intermediate_error_label = code.error_label
self.enter_call.generate_evaluation_code(code)
if not self.target:
self.enter_call.generate_disposal_code(code)
self.enter_call.free_temps(code)
else:
# Otherwise, the node will be cleaned up by the
# WithTargetAssignmentStatNode after assigning its result
# to the target of the 'with' statement.
pass
self.manager.generate_disposal_code(code)
self.manager.free_temps(code)
code.error_label = old_error_label
self.body.generate_execution_code(code)
if code.label_used(intermediate_error_label):
step_over_label = code.new_label()
code.put_goto(step_over_label)
code.put_label(intermediate_error_label)
code.put_decref_clear(self.exit_var, py_object_type)
code.put_goto(old_error_label)
code.put_label(step_over_label)
code.funcstate.release_temp(self.exit_var)
code.putln('}')
class WithTargetAssignmentStatNode(AssignmentNode):
# The target assignment of the 'with' statement value (return
# value of the __enter__() call).
#
# This is a special cased assignment that steals the RHS reference
# and frees its temp.
#
# lhs ExprNode the assignment target
# rhs CloneNode a (coerced) CloneNode for the orig_rhs (not owned by this node)
# orig_rhs ExprNode the original ExprNode of the rhs. this node will clean up the
# temps of the orig_rhs. basically, it takes ownership of the node
# when the WithStatNode is done with it.
child_attrs = ["lhs"]
def analyse_declarations(self, env):
self.lhs.analyse_target_declaration(env)
def analyse_expressions(self, env):
self.rhs = self.rhs.analyse_types(env)
self.lhs = self.lhs.analyse_target_types(env)
self.lhs.gil_assignment_check(env)
self.rhs = self.rhs.coerce_to(self.lhs.type, env)
return self
def generate_execution_code(self, code):
if self.orig_rhs.type.is_pyobject:
# make sure rhs gets freed on errors, see below
old_error_label = code.new_error_label()
intermediate_error_label = code.error_label
self.rhs.generate_evaluation_code(code)
self.lhs.generate_assignment_code(self.rhs, code)
if self.orig_rhs.type.is_pyobject:
self.orig_rhs.generate_disposal_code(code)
code.error_label = old_error_label
if code.label_used(intermediate_error_label):
step_over_label = code.new_label()
code.put_goto(step_over_label)
code.put_label(intermediate_error_label)
self.orig_rhs.generate_disposal_code(code)
code.put_goto(old_error_label)
code.put_label(step_over_label)
self.orig_rhs.free_temps(code)
def annotate(self, code):
self.lhs.annotate(code)
self.rhs.annotate(code)
class TryExceptStatNode(StatNode):
# try .. except statement
#
# body StatNode
# except_clauses [ExceptClauseNode]
# else_clause StatNode or None
child_attrs = ["body", "except_clauses", "else_clause"]
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
for except_clause in self.except_clauses:
except_clause.analyse_declarations(env)
if self.else_clause:
self.else_clause.analyse_declarations(env)
def analyse_expressions(self, env):
self.body = self.body.analyse_expressions(env)
default_clause_seen = 0
for i, except_clause in enumerate(self.except_clauses):
except_clause = self.except_clauses[i] = except_clause.analyse_expressions(env)
if default_clause_seen:
error(except_clause.pos, "default 'except:' must be last")
if not except_clause.pattern:
default_clause_seen = 1
self.has_default_clause = default_clause_seen
if self.else_clause:
self.else_clause = self.else_clause.analyse_expressions(env)
return self
nogil_check = Node.gil_error
gil_message = "Try-except statement"
def generate_execution_code(self, code):
old_return_label = code.return_label
old_break_label = code.break_label
old_continue_label = code.continue_label
old_error_label = code.new_error_label()
our_error_label = code.error_label
except_end_label = code.new_label('exception_handled')
except_error_label = code.new_label('except_error')
except_return_label = code.new_label('except_return')
try_return_label = code.new_label('try_return')
try_break_label = code.new_label('try_break')
try_continue_label = code.new_label('try_continue')
try_end_label = code.new_label('try_end')
exc_save_vars = [code.funcstate.allocate_temp(py_object_type, False)
for _ in xrange(3)]
code.putln("{")
save_exc = code.insertion_point()
code.putln(
"/*try:*/ {")
code.return_label = try_return_label
code.break_label = try_break_label
code.continue_label = try_continue_label
self.body.generate_execution_code(code)
code.putln(
"}")
temps_to_clean_up = code.funcstate.all_free_managed_temps()
can_raise = code.label_used(our_error_label)
if can_raise:
# inject code before the try block to save away the exception state
code.globalstate.use_utility_code(reset_exception_utility_code)
save_exc.putln("__Pyx_ExceptionSave(%s);" %
', '.join(['&%s' % var for var in exc_save_vars]))
for var in exc_save_vars:
save_exc.put_xgotref(var)
def restore_saved_exception():
for name in exc_save_vars:
code.put_xgiveref(name)
code.putln("__Pyx_ExceptionReset(%s);" %
', '.join(exc_save_vars))
else:
# try block cannot raise exceptions, but we had to allocate the temps above,
# so just keep the C compiler from complaining about them being unused
save_exc.putln("if (%s); else {/*mark used*/};" % '||'.join(exc_save_vars))
def restore_saved_exception():
pass
code.error_label = except_error_label
code.return_label = except_return_label
if self.else_clause:
code.putln(
"/*else:*/ {")
self.else_clause.generate_execution_code(code)
code.putln(
"}")
if can_raise:
for var in exc_save_vars:
code.put_xdecref_clear(var, py_object_type)
code.put_goto(try_end_label)
code.put_label(our_error_label)
for temp_name, temp_type in temps_to_clean_up:
code.put_xdecref_clear(temp_name, temp_type)
for except_clause in self.except_clauses:
except_clause.generate_handling_code(code, except_end_label)
if not self.has_default_clause:
code.put_goto(except_error_label)
for exit_label, old_label in [(except_error_label, old_error_label),
(try_break_label, old_break_label),
(try_continue_label, old_continue_label),
(try_return_label, old_return_label),
(except_return_label, old_return_label)]:
if code.label_used(exit_label):
if not code.label_used(try_end_label):
code.put_goto(try_end_label)
code.put_label(exit_label)
restore_saved_exception()
code.put_goto(old_label)
if code.label_used(except_end_label):
if not code.label_used(try_end_label):
code.put_goto(try_end_label)
code.put_label(except_end_label)
restore_saved_exception()
if code.label_used(try_end_label):
code.put_label(try_end_label)
code.putln("}")
for cname in exc_save_vars:
code.funcstate.release_temp(cname)
code.return_label = old_return_label
code.break_label = old_break_label
code.continue_label = old_continue_label
code.error_label = old_error_label
def generate_function_definitions(self, env, code):
self.body.generate_function_definitions(env, code)
for except_clause in self.except_clauses:
except_clause.generate_function_definitions(env, code)
if self.else_clause is not None:
self.else_clause.generate_function_definitions(env, code)
def annotate(self, code):
self.body.annotate(code)
for except_node in self.except_clauses:
except_node.annotate(code)
if self.else_clause:
self.else_clause.annotate(code)
class ExceptClauseNode(Node):
# Part of try ... except statement.
#
# pattern [ExprNode]
# target ExprNode or None
# body StatNode
# excinfo_target TupleNode(3*ResultRefNode) or None optional target for exception info (not owned here!)
# match_flag string result of exception match
# exc_value ExcValueNode used internally
# function_name string qualified name of enclosing function
# exc_vars (string * 3) local exception variables
# is_except_as bool Py3-style "except ... as xyz"
# excinfo_target is never set by the parser, but can be set by a transform
# in order to extract more extensive information about the exception as a
# sys.exc_info()-style tuple into a target variable
child_attrs = ["pattern", "target", "body", "exc_value"]
exc_value = None
excinfo_target = None
is_except_as = False
def analyse_declarations(self, env):
if self.target:
self.target.analyse_target_declaration(env)
self.body.analyse_declarations(env)
def analyse_expressions(self, env):
self.function_name = env.qualified_name
if self.pattern:
# normalise/unpack self.pattern into a list
for i, pattern in enumerate(self.pattern):
pattern = pattern.analyse_expressions(env)
self.pattern[i] = pattern.coerce_to_pyobject(env)
if self.target:
import ExprNodes
self.exc_value = ExprNodes.ExcValueNode(self.pos)
self.target = self.target.analyse_target_expression(env, self.exc_value)
self.body = self.body.analyse_expressions(env)
return self
def generate_handling_code(self, code, end_label):
code.mark_pos(self.pos)
if self.pattern:
exc_tests = []
for pattern in self.pattern:
pattern.generate_evaluation_code(code)
exc_tests.append("PyErr_ExceptionMatches(%s)" % pattern.py_result())
match_flag = code.funcstate.allocate_temp(PyrexTypes.c_int_type, False)
code.putln(
"%s = %s;" % (match_flag, ' || '.join(exc_tests)))
for pattern in self.pattern:
pattern.generate_disposal_code(code)
pattern.free_temps(code)
code.putln(
"if (%s) {" %
match_flag)
code.funcstate.release_temp(match_flag)
else:
code.putln("/*except:*/ {")
if (not getattr(self.body, 'stats', True)
and self.excinfo_target is None
and self.target is None):
# most simple case: no exception variable, empty body (pass)
# => reset the exception state, done
code.putln("PyErr_Restore(0,0,0);")
code.put_goto(end_label)
code.putln("}")
return
exc_vars = [code.funcstate.allocate_temp(py_object_type,
manage_ref=True)
for _ in xrange(3)]
code.put_add_traceback(self.function_name)
# We always have to fetch the exception value even if
# there is no target, because this also normalises the
# exception and stores it in the thread state.
code.globalstate.use_utility_code(get_exception_utility_code)
exc_args = "&%s, &%s, &%s" % tuple(exc_vars)
code.putln("if (__Pyx_GetException(%s) < 0) %s" % (exc_args,
code.error_goto(self.pos)))
for x in exc_vars:
code.put_gotref(x)
if self.target:
self.exc_value.set_var(exc_vars[1])
self.exc_value.generate_evaluation_code(code)
self.target.generate_assignment_code(self.exc_value, code)
if self.excinfo_target is not None:
for tempvar, node in zip(exc_vars, self.excinfo_target.args):
node.set_var(tempvar)
old_break_label, old_continue_label = code.break_label, code.continue_label
code.break_label = code.new_label('except_break')
code.continue_label = code.new_label('except_continue')
old_exc_vars = code.funcstate.exc_vars
code.funcstate.exc_vars = exc_vars
self.body.generate_execution_code(code)
code.funcstate.exc_vars = old_exc_vars
for var in exc_vars:
code.put_decref_clear(var, py_object_type)
code.put_goto(end_label)
for new_label, old_label in [(code.break_label, old_break_label),
(code.continue_label, old_continue_label)]:
if code.label_used(new_label):
code.put_label(new_label)
for var in exc_vars:
code.put_decref_clear(var, py_object_type)
code.put_goto(old_label)
code.break_label = old_break_label
code.continue_label = old_continue_label
for temp in exc_vars:
code.funcstate.release_temp(temp)
code.putln(
"}")
def generate_function_definitions(self, env, code):
if self.target is not None:
self.target.generate_function_definitions(env, code)
self.body.generate_function_definitions(env, code)
def annotate(self, code):
if self.pattern:
for pattern in self.pattern:
pattern.annotate(code)
if self.target:
self.target.annotate(code)
self.body.annotate(code)
class TryFinallyStatNode(StatNode):
# try ... finally statement
#
# body StatNode
# finally_clause StatNode
#
# The plan is that we funnel all continue, break
# return and error gotos into the beginning of the
# finally block, setting a variable to remember which
# one we're doing. At the end of the finally block, we
# switch on the variable to figure out where to go.
# In addition, if we're doing an error, we save the
# exception on entry to the finally block and restore
# it on exit.
child_attrs = ["body", "finally_clause"]
preserve_exception = 1
# handle exception case, in addition to return/break/continue
handle_error_case = True
func_return_type = None
disallow_continue_in_try_finally = 0
# There doesn't seem to be any point in disallowing
# continue in the try block, since we have no problem
# handling it.
is_try_finally_in_nogil = False
def create_analysed(pos, env, body, finally_clause):
node = TryFinallyStatNode(pos, body=body, finally_clause=finally_clause)
return node
create_analysed = staticmethod(create_analysed)
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
self.finally_clause.analyse_declarations(env)
def analyse_expressions(self, env):
self.body = self.body.analyse_expressions(env)
self.finally_clause = self.finally_clause.analyse_expressions(env)
if env.return_type and not env.return_type.is_void:
self.func_return_type = env.return_type
return self
nogil_check = Node.gil_error
gil_message = "Try-finally statement"
def generate_execution_code(self, code):
old_error_label = code.error_label
old_labels = code.all_new_labels()
new_labels = code.get_all_labels()
new_error_label = code.error_label
if not self.handle_error_case:
code.error_label = old_error_label
catch_label = code.new_label()
code.putln("/*try:*/ {")
if self.disallow_continue_in_try_finally:
was_in_try_finally = code.funcstate.in_try_finally
code.funcstate.in_try_finally = 1
self.body.generate_execution_code(code)
if self.disallow_continue_in_try_finally:
code.funcstate.in_try_finally = was_in_try_finally
code.putln("}")
code.set_all_labels(old_labels)
temps_to_clean_up = code.funcstate.all_free_managed_temps()
code.mark_pos(self.finally_clause.pos)
code.putln("/*finally:*/ {")
def fresh_finally_clause(_next=[self.finally_clause]):
# generate the original subtree once and always keep a fresh copy
node = _next[0]
node_copy = copy.deepcopy(node)
if node is self.finally_clause:
_next[0] = node_copy
else:
node = node_copy
return node
preserve_error = self.preserve_exception and code.label_used(new_error_label)
needs_success_cleanup = not self.finally_clause.is_terminator
if not self.body.is_terminator:
code.putln('/*normal exit:*/{')
fresh_finally_clause().generate_execution_code(code)
if not self.finally_clause.is_terminator:
code.put_goto(catch_label)
code.putln('}')
if preserve_error:
code.putln('/*exception exit:*/{')
if self.is_try_finally_in_nogil:
code.declare_gilstate()
if needs_success_cleanup:
exc_lineno_cnames = tuple([
code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
for _ in range(2)])
exc_filename_cname = code.funcstate.allocate_temp(
PyrexTypes.CPtrType(PyrexTypes.c_const_type(PyrexTypes.c_char_type)),
manage_ref=False)
else:
exc_lineno_cnames = exc_filename_cname = None
exc_vars = tuple([
code.funcstate.allocate_temp(py_object_type, manage_ref=False)
for _ in range(6)])
code.put_label(new_error_label)
self.put_error_catcher(
code, temps_to_clean_up, exc_vars, exc_lineno_cnames, exc_filename_cname)
finally_old_labels = code.all_new_labels()
code.putln('{')
old_exc_vars = code.funcstate.exc_vars
code.funcstate.exc_vars = exc_vars[:3]
fresh_finally_clause().generate_execution_code(code)
code.funcstate.exc_vars = old_exc_vars
code.putln('}')
if needs_success_cleanup:
self.put_error_uncatcher(code, exc_vars, exc_lineno_cnames, exc_filename_cname)
if exc_lineno_cnames:
for cname in exc_lineno_cnames:
code.funcstate.release_temp(cname)
if exc_filename_cname:
code.funcstate.release_temp(exc_filename_cname)
code.put_goto(old_error_label)
for new_label, old_label in zip(code.get_all_labels(), finally_old_labels):
if not code.label_used(new_label):
continue
code.put_label(new_label)
self.put_error_cleaner(code, exc_vars)
code.put_goto(old_label)
for cname in exc_vars:
code.funcstate.release_temp(cname)
code.putln('}')
code.set_all_labels(old_labels)
return_label = code.return_label
for i, (new_label, old_label) in enumerate(zip(new_labels, old_labels)):
if not code.label_used(new_label):
continue
if new_label == new_error_label and preserve_error:
continue # handled above
code.put('%s: ' % new_label)
code.putln('{')
ret_temp = None
if old_label == return_label and not self.finally_clause.is_terminator:
# store away return value for later reuse
if (self.func_return_type and
not self.is_try_finally_in_nogil and
not isinstance(self.finally_clause, GILExitNode)):
ret_temp = code.funcstate.allocate_temp(
self.func_return_type, manage_ref=False)
code.putln("%s = %s;" % (ret_temp, Naming.retval_cname))
if self.func_return_type.is_pyobject:
code.putln("%s = 0;" % Naming.retval_cname)
fresh_finally_clause().generate_execution_code(code)
if ret_temp:
code.putln("%s = %s;" % (Naming.retval_cname, ret_temp))
if self.func_return_type.is_pyobject:
code.putln("%s = 0;" % ret_temp)
code.funcstate.release_temp(ret_temp)
ret_temp = None
if not self.finally_clause.is_terminator:
code.put_goto(old_label)
code.putln('}')
# End finally
code.put_label(catch_label)
code.putln(
"}")
def generate_function_definitions(self, env, code):
self.body.generate_function_definitions(env, code)
self.finally_clause.generate_function_definitions(env, code)
def put_error_catcher(self, code, temps_to_clean_up, exc_vars,
exc_lineno_cnames, exc_filename_cname):
code.globalstate.use_utility_code(restore_exception_utility_code)
code.globalstate.use_utility_code(get_exception_utility_code)
code.globalstate.use_utility_code(swap_exception_utility_code)
code.putln(' '.join(["%s = 0;"]*len(exc_vars)) % exc_vars)
if self.is_try_finally_in_nogil:
code.put_ensure_gil(declare_gilstate=False)
for temp_name, type in temps_to_clean_up:
code.put_xdecref_clear(temp_name, type)
# not using preprocessor here to avoid warnings about
# unused utility functions and/or temps
code.putln("if (PY_MAJOR_VERSION >= 3)"
" __Pyx_ExceptionSwap(&%s, &%s, &%s);" % exc_vars[3:])
code.putln("if ((PY_MAJOR_VERSION < 3) ||"
# if __Pyx_GetException() fails in Py3,
# store the newly raised exception instead
" unlikely(__Pyx_GetException(&%s, &%s, &%s) < 0)) "
"__Pyx_ErrFetch(&%s, &%s, &%s);" % (exc_vars[:3] * 2))
for var in exc_vars:
code.put_xgotref(var)
if exc_lineno_cnames:
code.putln("%s = %s; %s = %s; %s = %s;" % (
exc_lineno_cnames[0], Naming.lineno_cname,
exc_lineno_cnames[1], Naming.clineno_cname,
exc_filename_cname, Naming.filename_cname))
if self.is_try_finally_in_nogil:
code.put_release_ensured_gil()
def put_error_uncatcher(self, code, exc_vars, exc_lineno_cnames, exc_filename_cname):
code.globalstate.use_utility_code(restore_exception_utility_code)
code.globalstate.use_utility_code(reset_exception_utility_code)
if self.is_try_finally_in_nogil:
code.put_ensure_gil(declare_gilstate=False)
# not using preprocessor here to avoid warnings about
# unused utility functions and/or temps
code.putln("if (PY_MAJOR_VERSION >= 3) {")
for var in exc_vars[3:]:
code.put_xgiveref(var)
code.putln("__Pyx_ExceptionReset(%s, %s, %s);" % exc_vars[3:])
code.putln("}")
for var in exc_vars[:3]:
code.put_xgiveref(var)
code.putln("__Pyx_ErrRestore(%s, %s, %s);" % exc_vars[:3])
if self.is_try_finally_in_nogil:
code.put_release_ensured_gil()
code.putln(' '.join(["%s = 0;"]*len(exc_vars)) % exc_vars)
if exc_lineno_cnames:
code.putln("%s = %s; %s = %s; %s = %s;" % (
Naming.lineno_cname, exc_lineno_cnames[0],
Naming.clineno_cname, exc_lineno_cnames[1],
Naming.filename_cname, exc_filename_cname))
def put_error_cleaner(self, code, exc_vars):
code.globalstate.use_utility_code(reset_exception_utility_code)
if self.is_try_finally_in_nogil:
code.put_ensure_gil(declare_gilstate=False)
# not using preprocessor here to avoid warnings about
# unused utility functions and/or temps
code.putln("if (PY_MAJOR_VERSION >= 3) {")
for var in exc_vars[3:]:
code.put_xgiveref(var)
code.putln("__Pyx_ExceptionReset(%s, %s, %s);" % exc_vars[3:])
code.putln("}")
for var in exc_vars[:3]:
code.put_xdecref_clear(var, py_object_type)
if self.is_try_finally_in_nogil:
code.put_release_ensured_gil()
code.putln(' '.join(["%s = 0;"]*3) % exc_vars[3:])
def annotate(self, code):
self.body.annotate(code)
self.finally_clause.annotate(code)
class NogilTryFinallyStatNode(TryFinallyStatNode):
"""
A try/finally statement that may be used in nogil code sections.
"""
preserve_exception = False
nogil_check = None
class GILStatNode(NogilTryFinallyStatNode):
# 'with gil' or 'with nogil' statement
#
# state string 'gil' or 'nogil'
state_temp = None
def __init__(self, pos, state, body):
self.state = state
self.create_state_temp_if_needed(pos, state, body)
TryFinallyStatNode.__init__(self, pos,
body=body,
finally_clause=GILExitNode(
pos, state=state, state_temp=self.state_temp))
def create_state_temp_if_needed(self, pos, state, body):
from ParseTreeTransforms import YieldNodeCollector
collector = YieldNodeCollector()
collector.visitchildren(body)
if not collector.yields:
return
if state == 'gil':
temp_type = PyrexTypes.c_gilstate_type
else:
temp_type = PyrexTypes.c_threadstate_ptr_type
import ExprNodes
self.state_temp = ExprNodes.TempNode(pos, temp_type)
def analyse_declarations(self, env):
env._in_with_gil_block = (self.state == 'gil')
if self.state == 'gil':
env.has_with_gil_block = True
return super(GILStatNode, self).analyse_declarations(env)
def analyse_expressions(self, env):
env.use_utility_code(
UtilityCode.load_cached("ForceInitThreads", "ModuleSetupCode.c"))
was_nogil = env.nogil
env.nogil = self.state == 'nogil'
node = TryFinallyStatNode.analyse_expressions(self, env)
env.nogil = was_nogil
return node
def generate_execution_code(self, code):
code.mark_pos(self.pos)
code.begin_block()
if self.state_temp:
self.state_temp.allocate(code)
variable = self.state_temp.result()
else:
variable = None
old_trace_config = code.funcstate.can_trace
if self.state == 'gil':
code.put_ensure_gil(variable=variable)
# FIXME: not that easy, tracing may not be possible at all here
#code.funcstate.can_trace = True
else:
code.put_release_gil(variable=variable)
code.funcstate.can_trace = False
TryFinallyStatNode.generate_execution_code(self, code)
if self.state_temp:
self.state_temp.release(code)
code.funcstate.can_trace = old_trace_config
code.end_block()
class GILExitNode(StatNode):
"""
Used as the 'finally' block in a GILStatNode
state string 'gil' or 'nogil'
"""
child_attrs = []
state_temp = None
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
if self.state_temp:
variable = self.state_temp.result()
else:
variable = None
if self.state == 'gil':
code.put_release_ensured_gil(variable)
else:
code.put_acquire_gil(variable)
class EnsureGILNode(GILExitNode):
"""
Ensure the GIL in nogil functions for cleanup before returning.
"""
def generate_execution_code(self, code):
code.put_ensure_gil(declare_gilstate=False)
utility_code_for_cimports = {
# utility code (or inlining c) in a pxd (or pyx) file.
# TODO: Consider a generic user-level mechanism for importing
'cpython.array' : ("ArrayAPI", "arrayarray.h"),
'cpython.array.array' : ("ArrayAPI", "arrayarray.h"),
}
class CImportStatNode(StatNode):
# cimport statement
#
# module_name string Qualified name of module being imported
# as_name string or None Name specified in "as" clause, if any
child_attrs = []
def analyse_declarations(self, env):
if not env.is_module_scope:
error(self.pos, "cimport only allowed at module level")
return
module_scope = env.find_module(self.module_name, self.pos)
if "." in self.module_name:
names = [EncodedString(name) for name in self.module_name.split(".")]
top_name = names[0]
top_module_scope = env.context.find_submodule(top_name)
module_scope = top_module_scope
for name in names[1:]:
submodule_scope = module_scope.find_submodule(name)
module_scope.declare_module(name, submodule_scope, self.pos)
module_scope = submodule_scope
if self.as_name:
env.declare_module(self.as_name, module_scope, self.pos)
else:
env.add_imported_module(module_scope)
env.declare_module(top_name, top_module_scope, self.pos)
else:
name = self.as_name or self.module_name
env.declare_module(name, module_scope, self.pos)
if self.module_name in utility_code_for_cimports:
env.use_utility_code(UtilityCode.load_cached(
*utility_code_for_cimports[self.module_name]))
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class FromCImportStatNode(StatNode):
# from ... cimport statement
#
# module_name string Qualified name of module
# imported_names [(pos, name, as_name, kind)] Names to be imported
child_attrs = []
def analyse_declarations(self, env):
if not env.is_module_scope:
error(self.pos, "cimport only allowed at module level")
return
module_scope = env.find_module(self.module_name, self.pos)
env.add_imported_module(module_scope)
for pos, name, as_name, kind in self.imported_names:
if name == "*":
for local_name, entry in module_scope.entries.items():
env.add_imported_entry(local_name, entry, pos)
else:
entry = module_scope.lookup(name)
if entry:
if kind and not self.declaration_matches(entry, kind):
entry.redeclared(pos)
entry.used = 1
else:
if kind == 'struct' or kind == 'union':
entry = module_scope.declare_struct_or_union(name,
kind = kind, scope = None, typedef_flag = 0, pos = pos)
elif kind == 'class':
entry = module_scope.declare_c_class(name, pos = pos,
module_name = self.module_name)
else:
submodule_scope = env.context.find_module(name, relative_to = module_scope, pos = self.pos)
if submodule_scope.parent_module is module_scope:
env.declare_module(as_name or name, submodule_scope, self.pos)
else:
error(pos, "Name '%s' not declared in module '%s'"
% (name, self.module_name))
if entry:
local_name = as_name or name
env.add_imported_entry(local_name, entry, pos)
if self.module_name.startswith('cpython'): # enough for now
if self.module_name in utility_code_for_cimports:
env.use_utility_code(UtilityCode.load_cached(
*utility_code_for_cimports[self.module_name]))
for _, name, _, _ in self.imported_names:
fqname = '%s.%s' % (self.module_name, name)
if fqname in utility_code_for_cimports:
env.use_utility_code(UtilityCode.load_cached(
*utility_code_for_cimports[fqname]))
def declaration_matches(self, entry, kind):
if not entry.is_type:
return 0
type = entry.type
if kind == 'class':
if not type.is_extension_type:
return 0
else:
if not type.is_struct_or_union:
return 0
if kind != type.kind:
return 0
return 1
def analyse_expressions(self, env):
return self
def generate_execution_code(self, code):
pass
class FromImportStatNode(StatNode):
# from ... import statement
#
# module ImportNode
# items [(string, NameNode)]
# interned_items [(string, NameNode, ExprNode)]
# item PyTempNode used internally
# import_star boolean used internally
child_attrs = ["module"]
import_star = 0
def analyse_declarations(self, env):
for name, target in self.items:
if name == "*":
if not env.is_module_scope:
error(self.pos, "import * only allowed at module level")
return
env.has_import_star = 1
self.import_star = 1
else:
target.analyse_target_declaration(env)
def analyse_expressions(self, env):
import ExprNodes
self.module = self.module.analyse_expressions(env)
self.item = ExprNodes.RawCNameExprNode(self.pos, py_object_type)
self.interned_items = []
for name, target in self.items:
if name == '*':
for _, entry in env.entries.items():
if not entry.is_type and entry.type.is_extension_type:
env.use_utility_code(UtilityCode.load_cached("ExtTypeTest", "ObjectHandling.c"))
break
else:
entry = env.lookup(target.name)
# check whether or not entry is already cimported
if (entry.is_type and entry.type.name == name
and hasattr(entry.type, 'module_name')):
if entry.type.module_name == self.module.module_name.value:
# cimported with absolute name
continue
try:
# cimported with relative name
module = env.find_module(self.module.module_name.value,
pos=None)
if entry.type.module_name == module.qualified_name:
continue
except AttributeError:
pass
target = target.analyse_target_expression(env, None) # FIXME?
if target.type is py_object_type:
coerced_item = None
else:
coerced_item = self.item.coerce_to(target.type, env)
self.interned_items.append((name, target, coerced_item))
return self
def generate_execution_code(self, code):
self.module.generate_evaluation_code(code)
if self.import_star:
code.putln(
'if (%s(%s) < 0) %s;' % (
Naming.import_star,
self.module.py_result(),
code.error_goto(self.pos)))
item_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True)
self.item.set_cname(item_temp)
if self.interned_items:
code.globalstate.use_utility_code(
UtilityCode.load_cached("ImportFrom", "ImportExport.c"))
for name, target, coerced_item in self.interned_items:
code.putln(
'%s = __Pyx_ImportFrom(%s, %s); %s' % (
item_temp,
self.module.py_result(),
code.intern_identifier(name),
code.error_goto_if_null(item_temp, self.pos)))
code.put_gotref(item_temp)
if coerced_item is None:
target.generate_assignment_code(self.item, code)
else:
coerced_item.allocate_temp_result(code)
coerced_item.generate_result_code(code)
target.generate_assignment_code(coerced_item, code)
code.put_decref_clear(item_temp, py_object_type)
code.funcstate.release_temp(item_temp)
self.module.generate_disposal_code(code)
self.module.free_temps(code)
class ParallelNode(Node):
"""
Base class for cython.parallel constructs.
"""
nogil_check = None
class ParallelStatNode(StatNode, ParallelNode):
"""
Base class for 'with cython.parallel.parallel():' and 'for i in prange():'.
assignments { Entry(var) : (var.pos, inplace_operator_or_None) }
assignments to variables in this parallel section
parent parent ParallelStatNode or None
is_parallel indicates whether this node is OpenMP parallel
(true for #pragma omp parallel for and
#pragma omp parallel)
is_parallel is true for:
#pragma omp parallel
#pragma omp parallel for
sections, but NOT for
#pragma omp for
We need this to determine the sharing attributes.
privatization_insertion_point a code insertion point used to make temps
private (esp. the "nsteps" temp)
args tuple the arguments passed to the parallel construct
kwargs DictNode the keyword arguments passed to the parallel
construct (replaced by its compile time value)
"""
child_attrs = ['body', 'num_threads']
body = None
is_prange = False
is_nested_prange = False
error_label_used = False
num_threads = None
chunksize = None
parallel_exc = (
Naming.parallel_exc_type,
Naming.parallel_exc_value,
Naming.parallel_exc_tb,
)
parallel_pos_info = (
Naming.parallel_filename,
Naming.parallel_lineno,
Naming.parallel_clineno,
)
pos_info = (
Naming.filename_cname,
Naming.lineno_cname,
Naming.clineno_cname,
)
critical_section_counter = 0
def __init__(self, pos, **kwargs):
super(ParallelStatNode, self).__init__(pos, **kwargs)
# All assignments in this scope
self.assignments = kwargs.get('assignments') or {}
# All seen closure cnames and their temporary cnames
self.seen_closure_vars = set()
# Dict of variables that should be declared (first|last|)private or
# reduction { Entry: (op, lastprivate) }.
# If op is not None, it's a reduction.
self.privates = {}
# [NameNode]
self.assigned_nodes = []
def analyse_declarations(self, env):
self.body.analyse_declarations(env)
self.num_threads = None
if self.kwargs:
# Try to find num_threads and chunksize keyword arguments
pairs = []
for dictitem in self.kwargs.key_value_pairs:
if dictitem.key.value == 'num_threads':
self.num_threads = dictitem.value
elif self.is_prange and dictitem.key.value == 'chunksize':
self.chunksize = dictitem.value
else:
pairs.append(dictitem)
self.kwargs.key_value_pairs = pairs
try:
self.kwargs = self.kwargs.compile_time_value(env)
except Exception, e:
error(self.kwargs.pos, "Only compile-time values may be "
"supplied as keyword arguments")
else:
self.kwargs = {}
for kw, val in self.kwargs.iteritems():
if kw not in self.valid_keyword_arguments:
error(self.pos, "Invalid keyword argument: %s" % kw)
else:
setattr(self, kw, val)
def analyse_expressions(self, env):
if self.num_threads:
self.num_threads = self.num_threads.analyse_expressions(env)
if self.chunksize:
self.chunksize = self.chunksize.analyse_expressions(env)
self.body = self.body.analyse_expressions(env)
self.analyse_sharing_attributes(env)
if self.num_threads is not None:
if (self.parent and self.parent.num_threads is not None and not
self.parent.is_prange):
error(self.pos,
"num_threads already declared in outer section")
elif self.parent and not self.parent.is_prange:
error(self.pos,
"num_threads must be declared in the parent parallel section")
elif (self.num_threads.type.is_int and
self.num_threads.is_literal and
self.num_threads.compile_time_value(env) <= 0):
error(self.pos,
"argument to num_threads must be greater than 0")
if not self.num_threads.is_simple():
self.num_threads = self.num_threads.coerce_to(
PyrexTypes.c_int_type, env).coerce_to_temp(env)
return self
def analyse_sharing_attributes(self, env):
"""
Analyse the privates for this block and set them in self.privates.
This should be called in a post-order fashion during the
analyse_expressions phase
"""
for entry, (pos, op) in self.assignments.iteritems():
if self.is_prange and not self.is_parallel:
# closely nested prange in a with parallel block, disallow
# assigning to privates in the with parallel block (we
# consider it too implicit and magicky for users)
if entry in self.parent.assignments:
error(pos,
"Cannot assign to private of outer parallel block")
continue
if not self.is_prange and op:
# Again possible, but considered to magicky
error(pos, "Reductions not allowed for parallel blocks")
continue
# By default all variables should have the same values as if
# executed sequentially
lastprivate = True
self.propagate_var_privatization(entry, pos, op, lastprivate)
def propagate_var_privatization(self, entry, pos, op, lastprivate):
"""
Propagate the sharing attributes of a variable. If the privatization is
determined by a parent scope, done propagate further.
If we are a prange, we propagate our sharing attributes outwards to
other pranges. If we are a prange in parallel block and the parallel
block does not determine the variable private, we propagate to the
parent of the parent. Recursion stops at parallel blocks, as they have
no concept of lastprivate or reduction.
So the following cases propagate:
sum is a reduction for all loops:
for i in prange(n):
for j in prange(n):
for k in prange(n):
sum += i * j * k
sum is a reduction for both loops, local_var is private to the
parallel with block:
for i in prange(n):
with parallel:
local_var = ... # private to the parallel
for j in prange(n):
sum += i * j
Nested with parallel blocks are disallowed, because they wouldn't
allow you to propagate lastprivates or reductions:
#pragma omp parallel for lastprivate(i)
for i in prange(n):
sum = 0
#pragma omp parallel private(j, sum)
with parallel:
#pragma omp parallel
with parallel:
#pragma omp for lastprivate(j) reduction(+:sum)
for j in prange(n):
sum += i
# sum and j are well-defined here
# sum and j are undefined here
# sum and j are undefined here
"""
self.privates[entry] = (op, lastprivate)
if entry.type.is_memoryviewslice:
error(pos, "Memoryview slices can only be shared in parallel sections")
return
if self.is_prange:
if not self.is_parallel and entry not in self.parent.assignments:
# Parent is a parallel with block
parent = self.parent.parent
else:
parent = self.parent
# We don't need to propagate privates, only reductions and
# lastprivates
if parent and (op or lastprivate):
parent.propagate_var_privatization(entry, pos, op, lastprivate)
def _allocate_closure_temp(self, code, entry):
"""
Helper function that allocate a temporary for a closure variable that
is assigned to.
"""
if self.parent:
return self.parent._allocate_closure_temp(code, entry)
if entry.cname in self.seen_closure_vars:
return entry.cname
cname = code.funcstate.allocate_temp(entry.type, True)
# Add both the actual cname and the temp cname, as the actual cname
# will be replaced with the temp cname on the entry
self.seen_closure_vars.add(entry.cname)
self.seen_closure_vars.add(cname)
self.modified_entries.append((entry, entry.cname))
code.putln("%s = %s;" % (cname, entry.cname))
entry.cname = cname
def initialize_privates_to_nan(self, code, exclude=None):
first = True
for entry, (op, lastprivate) in self.privates.iteritems():
if not op and (not exclude or entry != exclude):
invalid_value = entry.type.invalid_value()
if invalid_value:
if first:
code.putln("/* Initialize private variables to "
"invalid values */")
first = False
code.putln("%s = %s;" % (entry.cname,
entry.type.cast_code(invalid_value)))
def evaluate_before_block(self, code, expr):
c = self.begin_of_parallel_control_block_point_after_decls
# we need to set the owner to ourselves temporarily, as
# allocate_temp may generate a comment in the middle of our pragma
# otherwise when DebugFlags.debug_temp_code_comments is in effect
owner = c.funcstate.owner
c.funcstate.owner = c
expr.generate_evaluation_code(c)
c.funcstate.owner = owner
return expr.result()
def put_num_threads(self, code):
"""
Write self.num_threads if set as the num_threads OpenMP directive
"""
if self.num_threads is not None:
code.put(" num_threads(%s)" % self.evaluate_before_block(code,
self.num_threads))
def declare_closure_privates(self, code):
"""
If a variable is in a scope object, we need to allocate a temp and
assign the value from the temp to the variable in the scope object
after the parallel section. This kind of copying should be done only
in the outermost parallel section.
"""
self.modified_entries = []
for entry in self.assignments:
if entry.from_closure or entry.in_closure:
self._allocate_closure_temp(code, entry)
def release_closure_privates(self, code):
"""
Release any temps used for variables in scope objects. As this is the
outermost parallel block, we don't need to delete the cnames from
self.seen_closure_vars.
"""
for entry, original_cname in self.modified_entries:
code.putln("%s = %s;" % (original_cname, entry.cname))
code.funcstate.release_temp(entry.cname)
entry.cname = original_cname
def privatize_temps(self, code, exclude_temps=()):
"""
Make any used temporaries private. Before the relevant code block
code.start_collecting_temps() should have been called.
"""
if self.is_parallel:
c = self.privatization_insertion_point
self.temps = temps = code.funcstate.stop_collecting_temps()
privates, firstprivates = [], []
for temp, type in temps:
if type.is_pyobject or type.is_memoryviewslice:
firstprivates.append(temp)
else:
privates.append(temp)
if privates:
c.put(" private(%s)" % ", ".join(privates))
if firstprivates:
c.put(" firstprivate(%s)" % ", ".join(firstprivates))
if self.breaking_label_used:
shared_vars = [Naming.parallel_why]
if self.error_label_used:
shared_vars.extend(self.parallel_exc)
c.put(" private(%s, %s, %s)" % self.pos_info)
c.put(" shared(%s)" % ', '.join(shared_vars))
def cleanup_temps(self, code):
# Now clean up any memoryview slice and object temporaries
if self.is_parallel and not self.is_nested_prange:
code.putln("/* Clean up any temporaries */")
for temp, type in self.temps:
if type.is_memoryviewslice:
code.put_xdecref_memoryviewslice(temp, have_gil=False)
elif type.is_pyobject:
code.put_xdecref(temp, type)
code.putln("%s = NULL;" % temp)
def setup_parallel_control_flow_block(self, code):
"""
Sets up a block that surrounds the parallel block to determine
how the parallel section was exited. Any kind of return is
trapped (break, continue, return, exceptions). This is the idea:
{
int why = 0;
#pragma omp parallel
{
return # -> goto new_return_label;
goto end_parallel;
new_return_label:
why = 3;
goto end_parallel;
end_parallel:;
#pragma omp flush(why) # we need to flush for every iteration
}
if (why == 3)
goto old_return_label;
}
"""
self.old_loop_labels = code.new_loop_labels()
self.old_error_label = code.new_error_label()
self.old_return_label = code.return_label
code.return_label = code.new_label(name="return")
code.begin_block() # parallel control flow block
self.begin_of_parallel_control_block_point = code.insertion_point()
self.begin_of_parallel_control_block_point_after_decls = code.insertion_point()
self.undef_builtin_expect_apple_gcc_bug(code)
def begin_parallel_block(self, code):
"""
Each OpenMP thread in a parallel section that contains a with gil block
must have the thread-state initialized. The call to
PyGILState_Release() then deallocates our threadstate. If we wouldn't
do this, each with gil block would allocate and deallocate one, thereby
losing exception information before it can be saved before leaving the
parallel section.
"""
self.begin_of_parallel_block = code.insertion_point()
def end_parallel_block(self, code):
"""
To ensure all OpenMP threads have thread states, we ensure the GIL
in each thread (which creates a thread state if it doesn't exist),
after which we release the GIL.
On exit, reacquire the GIL and release the thread state.
If compiled without OpenMP support (at the C level), then we still have
to acquire the GIL to decref any object temporaries.
"""
if self.error_label_used:
begin_code = self.begin_of_parallel_block
end_code = code
begin_code.putln("#ifdef _OPENMP")
begin_code.put_ensure_gil(declare_gilstate=True)
begin_code.putln("Py_BEGIN_ALLOW_THREADS")
begin_code.putln("#endif /* _OPENMP */")
end_code.putln("#ifdef _OPENMP")
end_code.putln("Py_END_ALLOW_THREADS")
end_code.putln("#else")
end_code.put_safe("{\n")
end_code.put_ensure_gil()
end_code.putln("#endif /* _OPENMP */")
self.cleanup_temps(end_code)
end_code.put_release_ensured_gil()
end_code.putln("#ifndef _OPENMP")
end_code.put_safe("}\n")
end_code.putln("#endif /* _OPENMP */")
def trap_parallel_exit(self, code, should_flush=False):
"""
Trap any kind of return inside a parallel construct. 'should_flush'
indicates whether the variable should be flushed, which is needed by
prange to skip the loop. It also indicates whether we need to register
a continue (we need this for parallel blocks, but not for prange
loops, as it is a direct jump there).
It uses the same mechanism as try/finally:
1 continue
2 break
3 return
4 error
"""
save_lastprivates_label = code.new_label()
dont_return_label = code.new_label()
self.any_label_used = False
self.breaking_label_used = False
self.error_label_used = False
self.parallel_private_temps = []
all_labels = code.get_all_labels()
# Figure this out before starting to generate any code
for label in all_labels:
if code.label_used(label):
self.breaking_label_used = (self.breaking_label_used or
label != code.continue_label)
self.any_label_used = True
if self.any_label_used:
code.put_goto(dont_return_label)
for i, label in enumerate(all_labels):
if not code.label_used(label):
continue
is_continue_label = label == code.continue_label
code.put_label(label)
if not (should_flush and is_continue_label):
if label == code.error_label:
self.error_label_used = True
self.fetch_parallel_exception(code)
code.putln("%s = %d;" % (Naming.parallel_why, i + 1))
if (self.breaking_label_used and self.is_prange and not
is_continue_label):
code.put_goto(save_lastprivates_label)
else:
code.put_goto(dont_return_label)
if self.any_label_used:
if self.is_prange and self.breaking_label_used:
# Don't rely on lastprivate, save our lastprivates
code.put_label(save_lastprivates_label)
self.save_parallel_vars(code)
code.put_label(dont_return_label)
if should_flush and self.breaking_label_used:
code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_why)
def save_parallel_vars(self, code):
"""
The following shenanigans are instated when we break, return or
propagate errors from a prange. In this case we cannot rely on
lastprivate() to do its job, as no iterations may have executed yet
in the last thread, leaving the values undefined. It is most likely
that the breaking thread has well-defined values of the lastprivate
variables, so we keep those values.
"""
section_name = ("__pyx_parallel_lastprivates%d" %
self.critical_section_counter)
code.putln_openmp("#pragma omp critical(%s)" % section_name)
ParallelStatNode.critical_section_counter += 1
code.begin_block() # begin critical section
c = self.begin_of_parallel_control_block_point
temp_count = 0
for entry, (op, lastprivate) in self.privates.iteritems():
if not lastprivate or entry.type.is_pyobject:
continue
type_decl = entry.type.declaration_code("")
temp_cname = "__pyx_parallel_temp%d" % temp_count
private_cname = entry.cname
temp_count += 1
invalid_value = entry.type.invalid_value()
if invalid_value:
init = ' = ' + invalid_value
else:
init = ''
# Declare the parallel private in the outer block
c.putln("%s %s%s;" % (type_decl, temp_cname, init))
# Initialize before escaping
code.putln("%s = %s;" % (temp_cname, private_cname))
self.parallel_private_temps.append((temp_cname, private_cname))
code.end_block() # end critical section
def fetch_parallel_exception(self, code):
"""
As each OpenMP thread may raise an exception, we need to fetch that
exception from the threadstate and save it for after the parallel
section where it can be re-raised in the master thread.
Although it would seem that __pyx_filename, __pyx_lineno and
__pyx_clineno are only assigned to under exception conditions (i.e.,
when we have the GIL), and thus should be allowed to be shared without
any race condition, they are in fact subject to the same race
conditions that they were previously when they were global variables
and functions were allowed to release the GIL:
thread A thread B
acquire
set lineno
release
acquire
set lineno
release
acquire
fetch exception
release
skip the fetch
deallocate threadstate deallocate threadstate
"""
code.begin_block()
code.put_ensure_gil(declare_gilstate=True)
code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_exc_type)
code.putln(
"if (!%s) {" % Naming.parallel_exc_type)
code.putln("__Pyx_ErrFetch(&%s, &%s, &%s);" % self.parallel_exc)
pos_info = chain(*zip(self.parallel_pos_info, self.pos_info))
code.funcstate.uses_error_indicator = True
code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info))
code.put_gotref(Naming.parallel_exc_type)
code.putln(
"}")
code.put_release_ensured_gil()
code.end_block()
def restore_parallel_exception(self, code):
"Re-raise a parallel exception"
code.begin_block()
code.put_ensure_gil(declare_gilstate=True)
code.put_giveref(Naming.parallel_exc_type)
code.putln("__Pyx_ErrRestore(%s, %s, %s);" % self.parallel_exc)
pos_info = chain(*zip(self.pos_info, self.parallel_pos_info))
code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info))
code.put_release_ensured_gil()
code.end_block()
def restore_labels(self, code):
"""
Restore all old labels. Call this before the 'else' clause to for
loops and always before ending the parallel control flow block.
"""
code.set_all_labels(self.old_loop_labels + (self.old_return_label,
self.old_error_label))
def end_parallel_control_flow_block(self, code,
break_=False, continue_=False):
"""
This ends the parallel control flow block and based on how the parallel
section was exited, takes the corresponding action. The break_ and
continue_ parameters indicate whether these should be propagated
outwards:
for i in prange(...):
with cython.parallel.parallel():
continue
Here break should be trapped in the parallel block, and propagated to
the for loop.
"""
c = self.begin_of_parallel_control_block_point
# Firstly, always prefer errors over returning, continue or break
if self.error_label_used:
c.putln("const char *%s = NULL; int %s = 0, %s = 0;" %
self.parallel_pos_info)
c.putln("PyObject *%s = NULL, *%s = NULL, *%s = NULL;" %
self.parallel_exc)
code.putln(
"if (%s) {" % Naming.parallel_exc_type)
code.putln("/* This may have been overridden by a continue, "
"break or return in another thread. Prefer the error. */")
code.putln("%s = 4;" % Naming.parallel_why)
code.putln(
"}")
if continue_:
any_label_used = self.any_label_used
else:
any_label_used = self.breaking_label_used
if any_label_used:
# __pyx_parallel_why is used, declare and initialize
c.putln("int %s;" % Naming.parallel_why)
c.putln("%s = 0;" % Naming.parallel_why)
code.putln(
"if (%s) {" % Naming.parallel_why)
for temp_cname, private_cname in self.parallel_private_temps:
code.putln("%s = %s;" % (private_cname, temp_cname))
code.putln("switch (%s) {" % Naming.parallel_why)
if continue_:
code.put(" case 1: ")
code.put_goto(code.continue_label)
if break_:
code.put(" case 2: ")
code.put_goto(code.break_label)
code.put(" case 3: ")
code.put_goto(code.return_label)
if self.error_label_used:
code.globalstate.use_utility_code(restore_exception_utility_code)
code.putln(" case 4:")
self.restore_parallel_exception(code)
code.put_goto(code.error_label)
code.putln("}") # end switch
code.putln(
"}") # end if
code.end_block() # end parallel control flow block
self.redef_builtin_expect_apple_gcc_bug(code)
# FIXME: improve with version number for OS X Lion
buggy_platform_macro_condition = "(defined(__APPLE__) || defined(__OSX__))"
have_expect_condition = "(defined(__GNUC__) && " \
"(__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))"
redef_condition = "(%s && %s)" % (buggy_platform_macro_condition, have_expect_condition)
def undef_builtin_expect_apple_gcc_bug(self, code):
"""
A bug on OS X Lion disallows __builtin_expect macros. This code avoids them
"""
if not self.parent:
code.undef_builtin_expect(self.redef_condition)
def redef_builtin_expect_apple_gcc_bug(self, code):
if not self.parent:
code.redef_builtin_expect(self.redef_condition)
class ParallelWithBlockNode(ParallelStatNode):
"""
This node represents a 'with cython.parallel.parallel():' block
"""
valid_keyword_arguments = ['num_threads']
num_threads = None
def analyse_declarations(self, env):
super(ParallelWithBlockNode, self).analyse_declarations(env)
if self.args:
error(self.pos, "cython.parallel.parallel() does not take "
"positional arguments")
def generate_execution_code(self, code):
self.declare_closure_privates(code)
self.setup_parallel_control_flow_block(code)
code.putln("#ifdef _OPENMP")
code.put("#pragma omp parallel ")
if self.privates:
privates = [e.cname for e in self.privates
if not e.type.is_pyobject]
code.put('private(%s)' % ', '.join(privates))
self.privatization_insertion_point = code.insertion_point()
self.put_num_threads(code)
code.putln("")
code.putln("#endif /* _OPENMP */")
code.begin_block() # parallel block
self.begin_parallel_block(code)
self.initialize_privates_to_nan(code)
code.funcstate.start_collecting_temps()
self.body.generate_execution_code(code)
self.trap_parallel_exit(code)
self.privatize_temps(code)
self.end_parallel_block(code)
code.end_block() # end parallel block
continue_ = code.label_used(code.continue_label)
break_ = code.label_used(code.break_label)
self.restore_labels(code)
self.end_parallel_control_flow_block(code, break_=break_,
continue_=continue_)
self.release_closure_privates(code)
class ParallelRangeNode(ParallelStatNode):
"""
This node represents a 'for i in cython.parallel.prange():' construct.
target NameNode the target iteration variable
else_clause Node or None the else clause of this loop
"""
child_attrs = ['body', 'target', 'else_clause', 'args', 'num_threads',
'chunksize']
body = target = else_clause = args = None
start = stop = step = None
is_prange = True
nogil = None
schedule = None
valid_keyword_arguments = ['schedule', 'nogil', 'num_threads', 'chunksize']
def __init__(self, pos, **kwds):
super(ParallelRangeNode, self).__init__(pos, **kwds)
# Pretend to be a ForInStatNode for control flow analysis
self.iterator = PassStatNode(pos)
def analyse_declarations(self, env):
super(ParallelRangeNode, self).analyse_declarations(env)
self.target.analyse_target_declaration(env)
if self.else_clause is not None:
self.else_clause.analyse_declarations(env)
if not self.args or len(self.args) > 3:
error(self.pos, "Invalid number of positional arguments to prange")
return
if len(self.args) == 1:
self.stop, = self.args
elif len(self.args) == 2:
self.start, self.stop = self.args
else:
self.start, self.stop, self.step = self.args
if hasattr(self.schedule, 'decode'):
self.schedule = self.schedule.decode('ascii')
if self.schedule not in (None, 'static', 'dynamic', 'guided',
'runtime'):
error(self.pos, "Invalid schedule argument to prange: %s" %
(self.schedule,))
def analyse_expressions(self, env):
was_nogil = env.nogil
if self.nogil:
env.nogil = True
if self.target is None:
error(self.pos, "prange() can only be used as part of a for loop")
return self
self.target = self.target.analyse_target_types(env)
if not self.target.type.is_numeric:
# Not a valid type, assume one for now anyway
if not self.target.type.is_pyobject:
# nogil_check will catch the is_pyobject case
error(self.target.pos,
"Must be of numeric type, not %s" % self.target.type)
self.index_type = PyrexTypes.c_py_ssize_t_type
else:
self.index_type = self.target.type
if not self.index_type.signed:
warning(self.target.pos,
"Unsigned index type not allowed before OpenMP 3.0",
level=2)
# Setup start, stop and step, allocating temps if needed
self.names = 'start', 'stop', 'step'
start_stop_step = self.start, self.stop, self.step
for node, name in zip(start_stop_step, self.names):
if node is not None:
node.analyse_types(env)
if not node.type.is_numeric:
error(node.pos, "%s argument must be numeric" % name)
continue
if not node.is_literal:
node = node.coerce_to_temp(env)
setattr(self, name, node)
# As we range from 0 to nsteps, computing the index along the
# way, we need a fitting type for 'i' and 'nsteps'
self.index_type = PyrexTypes.widest_numeric_type(
self.index_type, node.type)
if self.else_clause is not None:
self.else_clause = self.else_clause.analyse_expressions(env)
# Although not actually an assignment in this scope, it should be
# treated as such to ensure it is unpacked if a closure temp, and to
# ensure lastprivate behaviour and propagation. If the target index is
# not a NameNode, it won't have an entry, and an error was issued by
# ParallelRangeTransform
if hasattr(self.target, 'entry'):
self.assignments[self.target.entry] = self.target.pos, None
node = super(ParallelRangeNode, self).analyse_expressions(env)
if node.chunksize:
if not node.schedule:
error(node.chunksize.pos,
"Must provide schedule with chunksize")
elif node.schedule == 'runtime':
error(node.chunksize.pos,
"Chunksize not valid for the schedule runtime")
elif (node.chunksize.type.is_int and
node.chunksize.is_literal and
node.chunksize.compile_time_value(env) <= 0):
error(node.chunksize.pos, "Chunksize must not be negative")
node.chunksize = node.chunksize.coerce_to(
PyrexTypes.c_int_type, env).coerce_to_temp(env)
if node.nogil:
env.nogil = was_nogil
node.is_nested_prange = node.parent and node.parent.is_prange
if node.is_nested_prange:
parent = node
while parent.parent and parent.parent.is_prange:
parent = parent.parent
parent.assignments.update(node.assignments)
parent.privates.update(node.privates)
parent.assigned_nodes.extend(node.assigned_nodes)
return node
def nogil_check(self, env):
names = 'start', 'stop', 'step', 'target'
nodes = self.start, self.stop, self.step, self.target
for name, node in zip(names, nodes):
if node is not None and node.type.is_pyobject:
error(node.pos, "%s may not be a Python object "
"as we don't have the GIL" % name)
def generate_execution_code(self, code):
"""
Generate code in the following steps
1) copy any closure variables determined thread-private
into temporaries
2) allocate temps for start, stop and step
3) generate a loop that calculates the total number of steps,
which then computes the target iteration variable for every step:
for i in prange(start, stop, step):
...
becomes
nsteps = (stop - start) / step;
i = start;
#pragma omp parallel for lastprivate(i)
for (temp = 0; temp < nsteps; temp++) {
i = start + step * temp;
...
}
Note that accumulation of 'i' would have a data dependency
between iterations.
Also, you can't do this
for (i = start; i < stop; i += step)
...
as the '<' operator should become '>' for descending loops.
'for i from x < i < y:' does not suffer from this problem
as the relational operator is known at compile time!
4) release our temps and write back any private closure variables
"""
self.declare_closure_privates(code)
# This can only be a NameNode
target_index_cname = self.target.entry.cname
# This will be used as the dict to format our code strings, holding
# the start, stop , step, temps and target cnames
fmt_dict = {
'target': target_index_cname,
}
# Setup start, stop and step, allocating temps if needed
start_stop_step = self.start, self.stop, self.step
defaults = '0', '0', '1'
for node, name, default in zip(start_stop_step, self.names, defaults):
if node is None:
result = default
elif node.is_literal:
result = node.get_constant_c_result_code()
else:
node.generate_evaluation_code(code)
result = node.result()
fmt_dict[name] = result
fmt_dict['i'] = code.funcstate.allocate_temp(self.index_type, False)
fmt_dict['nsteps'] = code.funcstate.allocate_temp(self.index_type, False)
# TODO: check if the step is 0 and if so, raise an exception in a
# 'with gil' block. For now, just abort
code.putln("if (%(step)s == 0) abort();" % fmt_dict)
self.setup_parallel_control_flow_block(code) # parallel control flow block
self.control_flow_var_code_point = code.insertion_point()
# Note: nsteps is private in an outer scope if present
code.putln("%(nsteps)s = (%(stop)s - %(start)s) / %(step)s;" % fmt_dict)
# The target iteration variable might not be initialized, do it only if
# we are executing at least 1 iteration, otherwise we should leave the
# target unaffected. The target iteration variable is firstprivate to
# shut up compiler warnings caused by lastprivate, as the compiler
# erroneously believes that nsteps may be <= 0, leaving the private
# target index uninitialized
code.putln("if (%(nsteps)s > 0)" % fmt_dict)
code.begin_block() # if block
self.generate_loop(code, fmt_dict)
code.end_block() # end if block
self.restore_labels(code)
if self.else_clause:
if self.breaking_label_used:
code.put("if (%s < 2)" % Naming.parallel_why)
code.begin_block() # else block
code.putln("/* else */")
self.else_clause.generate_execution_code(code)
code.end_block() # end else block
# ------ cleanup ------
self.end_parallel_control_flow_block(code) # end parallel control flow block
# And finally, release our privates and write back any closure
# variables
for temp in start_stop_step:
if temp is not None:
temp.generate_disposal_code(code)
temp.free_temps(code)
code.funcstate.release_temp(fmt_dict['i'])
code.funcstate.release_temp(fmt_dict['nsteps'])
self.release_closure_privates(code)
def generate_loop(self, code, fmt_dict):
if self.is_nested_prange:
code.putln("#if 0")
else:
code.putln("#ifdef _OPENMP")
if not self.is_parallel:
code.put("#pragma omp for")
self.privatization_insertion_point = code.insertion_point()
reduction_codepoint = self.parent.privatization_insertion_point
else:
code.put("#pragma omp parallel")
self.privatization_insertion_point = code.insertion_point()
reduction_codepoint = self.privatization_insertion_point
code.putln("")
code.putln("#endif /* _OPENMP */")
code.begin_block() # pragma omp parallel begin block
# Initialize the GIL if needed for this thread
self.begin_parallel_block(code)
if self.is_nested_prange:
code.putln("#if 0")
else:
code.putln("#ifdef _OPENMP")
code.put("#pragma omp for")
for entry, (op, lastprivate) in self.privates.iteritems():
# Don't declare the index variable as a reduction
if op and op in "+*-&^|" and entry != self.target.entry:
if entry.type.is_pyobject:
error(self.pos, "Python objects cannot be reductions")
else:
#code.put(" reduction(%s:%s)" % (op, entry.cname))
# This is the only way reductions + nesting works in gcc4.5
reduction_codepoint.put(
" reduction(%s:%s)" % (op, entry.cname))
else:
if entry == self.target.entry:
code.put(" firstprivate(%s)" % entry.cname)
code.put(" lastprivate(%s)" % entry.cname)
continue
if not entry.type.is_pyobject:
if lastprivate:
private = 'lastprivate'
else:
private = 'private'
code.put(" %s(%s)" % (private, entry.cname))
if self.schedule:
if self.chunksize:
chunksize = ", %s" % self.evaluate_before_block(code,
self.chunksize)
else:
chunksize = ""
code.put(" schedule(%s%s)" % (self.schedule, chunksize))
self.put_num_threads(reduction_codepoint)
code.putln("")
code.putln("#endif /* _OPENMP */")
code.put("for (%(i)s = 0; %(i)s < %(nsteps)s; %(i)s++)" % fmt_dict)
code.begin_block() # for loop block
guard_around_body_codepoint = code.insertion_point()
# Start if guard block around the body. This may be unnecessary, but
# at least it doesn't spoil indentation
code.begin_block()
code.putln("%(target)s = %(start)s + %(step)s * %(i)s;" % fmt_dict)
self.initialize_privates_to_nan(code, exclude=self.target.entry)
if self.is_parallel:
code.funcstate.start_collecting_temps()
self.body.generate_execution_code(code)
self.trap_parallel_exit(code, should_flush=True)
self.privatize_temps(code)
if self.breaking_label_used:
# Put a guard around the loop body in case return, break or
# exceptions might be used
guard_around_body_codepoint.putln("if (%s < 2)" % Naming.parallel_why)
code.end_block() # end guard around loop body
code.end_block() # end for loop block
if self.is_parallel:
# Release the GIL and deallocate the thread state
self.end_parallel_block(code)
code.end_block() # pragma omp parallel end block
class CnameDecoratorNode(StatNode):
"""
This node is for the cname decorator in CythonUtilityCode:
@cname('the_cname')
cdef func(...):
...
In case of a cdef class the cname specifies the objstruct_cname.
node the node to which the cname decorator is applied
cname the cname the node should get
"""
child_attrs = ['node']
def analyse_declarations(self, env):
self.node.analyse_declarations(env)
node = self.node
if isinstance(node, CompilerDirectivesNode):
node = node.body.stats[0]
self.is_function = isinstance(node, FuncDefNode)
is_struct_or_enum = isinstance(node, (CStructOrUnionDefNode,
CEnumDefNode))
e = node.entry
if self.is_function:
e.cname = self.cname
e.func_cname = self.cname
e.used = True
if e.pyfunc_cname and '.' in e.pyfunc_cname:
e.pyfunc_cname = self.mangle(e.pyfunc_cname)
elif is_struct_or_enum:
e.cname = e.type.cname = self.cname
else:
scope = node.scope
e.cname = self.cname
e.type.objstruct_cname = self.cname + '_obj'
e.type.typeobj_cname = Naming.typeobj_prefix + self.cname
e.type.typeptr_cname = self.cname + '_type'
e.type.scope.namespace_cname = e.type.typeptr_cname
e.as_variable.cname = py_object_type.cast_code(e.type.typeptr_cname)
scope.scope_prefix = self.cname + "_"
for name, entry in scope.entries.iteritems():
if entry.func_cname:
entry.func_cname = self.mangle(entry.cname)
if entry.pyfunc_cname:
entry.pyfunc_cname = self.mangle(entry.pyfunc_cname)
def mangle(self, cname):
if '.' in cname:
# remove __pyx_base from func_cname
cname = cname.split('.')[-1]
return '%s_%s' % (self.cname, cname)
def analyse_expressions(self, env):
self.node = self.node.analyse_expressions(env)
return self
def generate_function_definitions(self, env, code):
"Ensure a prototype for every @cname method in the right place"
if self.is_function and env.is_c_class_scope:
# method in cdef class, generate a prototype in the header
h_code = code.globalstate['utility_code_proto']
if isinstance(self.node, DefNode):
self.node.generate_function_header(
h_code, with_pymethdef=False, proto_only=True)
else:
import ModuleNode
entry = self.node.entry
cname = entry.cname
entry.cname = entry.func_cname
ModuleNode.generate_cfunction_declaration(
entry,
env.global_scope(),
h_code,
definition=True)
entry.cname = cname
self.node.generate_function_definitions(env, code)
def generate_execution_code(self, code):
self.node.generate_execution_code(code)
#------------------------------------------------------------------------------------
#
# Runtime support code
#
#------------------------------------------------------------------------------------
if Options.gcc_branch_hints:
branch_prediction_macros = """
/* Test for GCC > 2.95 */
#if defined(__GNUC__) \
&& (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#else /* !__GNUC__ or GCC < 2.95 */
#define likely(x) (x)
#define unlikely(x) (x)
#endif /* __GNUC__ */
"""
else:
branch_prediction_macros = """
#define likely(x) (x)
#define unlikely(x) (x)
"""
#------------------------------------------------------------------------------------
printing_utility_code = UtilityCode.load_cached("Print", "Printing.c")
printing_one_utility_code = UtilityCode.load_cached("PrintOne", "Printing.c")
#------------------------------------------------------------------------------------
# Exception raising code
#
# Exceptions are raised by __Pyx_Raise() and stored as plain
# type/value/tb in PyThreadState->curexc_*. When being caught by an
# 'except' statement, curexc_* is moved over to exc_* by
# __Pyx_GetException()
restore_exception_utility_code = UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c")
raise_utility_code = UtilityCode.load_cached("RaiseException", "Exceptions.c")
get_exception_utility_code = UtilityCode.load_cached("GetException", "Exceptions.c")
swap_exception_utility_code = UtilityCode.load_cached("SwapException", "Exceptions.c")
reset_exception_utility_code = UtilityCode.load_cached("SaveResetException", "Exceptions.c")
traceback_utility_code = UtilityCode.load_cached("AddTraceback", "Exceptions.c")
#------------------------------------------------------------------------------------
get_exception_tuple_utility_code = UtilityCode(proto="""
static PyObject *__Pyx_GetExceptionTuple(void); /*proto*/
""",
# I doubt that calling __Pyx_GetException() here is correct as it moves
# the exception from tstate->curexc_* to tstate->exc_*, which prevents
# exception handlers later on from receiving it.
impl = """
static PyObject *__Pyx_GetExceptionTuple(void) {
PyObject *type = NULL, *value = NULL, *tb = NULL;
if (__Pyx_GetException(&type, &value, &tb) == 0) {
PyObject* exc_info = PyTuple_New(3);
if (exc_info) {
Py_INCREF(type);
Py_INCREF(value);
Py_INCREF(tb);
PyTuple_SET_ITEM(exc_info, 0, type);
PyTuple_SET_ITEM(exc_info, 1, value);
PyTuple_SET_ITEM(exc_info, 2, tb);
return exc_info;
}
}
return NULL;
}
""",
requires=[get_exception_utility_code])