| // Copyright 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cc/resources/picture_pile.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <vector> |
| |
| #include "cc/base/region.h" |
| #include "cc/debug/rendering_stats_instrumentation.h" |
| #include "cc/resources/picture_pile_impl.h" |
| #include "cc/resources/raster_worker_pool.h" |
| #include "cc/resources/tile_priority.h" |
| |
| namespace { |
| // Layout pixel buffer around the visible layer rect to record. Any base |
| // picture that intersects the visible layer rect expanded by this distance |
| // will be recorded. |
| const int kPixelDistanceToRecord = 8000; |
| // We don't perform solid color analysis on images that have more than 10 skia |
| // operations. |
| const int kOpCountThatIsOkToAnalyze = 10; |
| |
| // TODO(humper): The density threshold here is somewhat arbitrary; need a |
| // way to set // this from the command line so we can write a benchmark |
| // script and find a sweet spot. |
| const float kDensityThreshold = 0.5f; |
| |
| bool rect_sort_y(const gfx::Rect& r1, const gfx::Rect& r2) { |
| return r1.y() < r2.y() || (r1.y() == r2.y() && r1.x() < r2.x()); |
| } |
| |
| bool rect_sort_x(const gfx::Rect& r1, const gfx::Rect& r2) { |
| return r1.x() < r2.x() || (r1.x() == r2.x() && r1.y() < r2.y()); |
| } |
| |
| float PerformClustering(const std::vector<gfx::Rect>& tiles, |
| std::vector<gfx::Rect>* clustered_rects) { |
| // These variables track the record area and invalid area |
| // for the entire clustering |
| int total_record_area = 0; |
| int total_invalid_area = 0; |
| |
| // These variables track the record area and invalid area |
| // for the current cluster being constructed. |
| gfx::Rect cur_record_rect; |
| int cluster_record_area = 0, cluster_invalid_area = 0; |
| |
| for (std::vector<gfx::Rect>::const_iterator it = tiles.begin(); |
| it != tiles.end(); |
| it++) { |
| gfx::Rect invalid_tile = *it; |
| |
| // For each tile, we consider adding the invalid tile to the |
| // current record rectangle. Only add it if the amount of empty |
| // space created is below a density threshold. |
| int tile_area = invalid_tile.width() * invalid_tile.height(); |
| |
| gfx::Rect proposed_union = cur_record_rect; |
| proposed_union.Union(invalid_tile); |
| int proposed_area = proposed_union.width() * proposed_union.height(); |
| float proposed_density = |
| static_cast<float>(cluster_invalid_area + tile_area) / |
| static_cast<float>(proposed_area); |
| |
| if (proposed_density >= kDensityThreshold) { |
| // It's okay to add this invalid tile to the |
| // current recording rectangle. |
| cur_record_rect = proposed_union; |
| cluster_record_area = proposed_area; |
| cluster_invalid_area += tile_area; |
| total_invalid_area += tile_area; |
| } else { |
| // Adding this invalid tile to the current recording rectangle |
| // would exceed our badness threshold, so put the current rectangle |
| // in the list of recording rects, and start a new one. |
| clustered_rects->push_back(cur_record_rect); |
| total_record_area += cluster_record_area; |
| cur_record_rect = invalid_tile; |
| cluster_invalid_area = tile_area; |
| cluster_record_area = tile_area; |
| } |
| } |
| |
| DCHECK(!cur_record_rect.IsEmpty()); |
| clustered_rects->push_back(cur_record_rect); |
| total_record_area += cluster_record_area;; |
| |
| DCHECK_NE(total_record_area, 0); |
| |
| return static_cast<float>(total_invalid_area) / |
| static_cast<float>(total_record_area); |
| } |
| |
| float ClusterTiles(const std::vector<gfx::Rect>& invalid_tiles, |
| std::vector<gfx::Rect>* record_rects) { |
| TRACE_EVENT1("cc", "ClusterTiles", |
| "count", |
| invalid_tiles.size()); |
| |
| if (invalid_tiles.size() <= 1) { |
| // Quickly handle the special case for common |
| // single-invalidation update, and also the less common |
| // case of no tiles passed in. |
| *record_rects = invalid_tiles; |
| return 1; |
| } |
| |
| // Sort the invalid tiles by y coordinate. |
| std::vector<gfx::Rect> invalid_tiles_vertical = invalid_tiles; |
| std::sort(invalid_tiles_vertical.begin(), |
| invalid_tiles_vertical.end(), |
| rect_sort_y); |
| |
| float vertical_density; |
| std::vector<gfx::Rect> vertical_clustering; |
| vertical_density = PerformClustering(invalid_tiles_vertical, |
| &vertical_clustering); |
| |
| // If vertical density is optimal, then we can return early. |
| if (vertical_density == 1.f) { |
| *record_rects = vertical_clustering; |
| return vertical_density; |
| } |
| |
| // Now try again with a horizontal sort, see which one is best |
| std::vector<gfx::Rect> invalid_tiles_horizontal = invalid_tiles; |
| std::sort(invalid_tiles_horizontal.begin(), |
| invalid_tiles_horizontal.end(), |
| rect_sort_x); |
| |
| float horizontal_density; |
| std::vector<gfx::Rect> horizontal_clustering; |
| horizontal_density = PerformClustering(invalid_tiles_horizontal, |
| &horizontal_clustering); |
| |
| if (vertical_density < horizontal_density) { |
| *record_rects = horizontal_clustering; |
| return horizontal_density; |
| } |
| |
| *record_rects = vertical_clustering; |
| return vertical_density; |
| } |
| |
| } // namespace |
| |
| namespace cc { |
| |
| PicturePile::PicturePile() : is_suitable_for_gpu_rasterization_(true) { |
| } |
| |
| PicturePile::~PicturePile() { |
| } |
| |
| bool PicturePile::UpdateAndExpandInvalidation( |
| ContentLayerClient* painter, |
| Region* invalidation, |
| SkColor background_color, |
| bool contents_opaque, |
| bool contents_fill_bounds_completely, |
| const gfx::Size& layer_size, |
| const gfx::Rect& visible_layer_rect, |
| int frame_number, |
| Picture::RecordingMode recording_mode, |
| RenderingStatsInstrumentation* stats_instrumentation) { |
| background_color_ = background_color; |
| contents_opaque_ = contents_opaque; |
| contents_fill_bounds_completely_ = contents_fill_bounds_completely; |
| |
| bool updated = false; |
| |
| Region resize_invalidation; |
| gfx::Size old_tiling_size = tiling_size(); |
| if (old_tiling_size != layer_size) { |
| tiling_.SetTilingSize(layer_size); |
| updated = true; |
| } |
| |
| gfx::Rect interest_rect = visible_layer_rect; |
| interest_rect.Inset( |
| -kPixelDistanceToRecord, |
| -kPixelDistanceToRecord, |
| -kPixelDistanceToRecord, |
| -kPixelDistanceToRecord); |
| recorded_viewport_ = interest_rect; |
| recorded_viewport_.Intersect(gfx::Rect(tiling_size())); |
| |
| gfx::Rect interest_rect_over_tiles = |
| tiling_.ExpandRectToTileBounds(interest_rect); |
| |
| if (old_tiling_size != layer_size) { |
| has_any_recordings_ = false; |
| |
| // Drop recordings that are outside the new layer bounds or that changed |
| // size. |
| std::vector<PictureMapKey> to_erase; |
| int min_toss_x = tiling_.num_tiles_x(); |
| if (tiling_size().width() > old_tiling_size.width()) { |
| min_toss_x = |
| tiling_.FirstBorderTileXIndexFromSrcCoord(old_tiling_size.width()); |
| } |
| int min_toss_y = tiling_.num_tiles_y(); |
| if (tiling_size().height() > old_tiling_size.height()) { |
| min_toss_y = |
| tiling_.FirstBorderTileYIndexFromSrcCoord(old_tiling_size.height()); |
| } |
| for (PictureMap::const_iterator it = picture_map_.begin(); |
| it != picture_map_.end(); |
| ++it) { |
| const PictureMapKey& key = it->first; |
| if (key.first < min_toss_x && key.second < min_toss_y) { |
| has_any_recordings_ |= !!it->second.GetPicture(); |
| continue; |
| } |
| to_erase.push_back(key); |
| } |
| |
| for (size_t i = 0; i < to_erase.size(); ++i) |
| picture_map_.erase(to_erase[i]); |
| |
| // If a recording is dropped and not re-recorded below, invalidate that |
| // full recording to cause any raster tiles that would use it to be |
| // dropped. |
| // If the recording will be replaced below, just invalidate newly exposed |
| // areas to force raster tiles that include the old recording to know |
| // there is new recording to display. |
| gfx::Rect old_tiling_rect_over_tiles = |
| tiling_.ExpandRectToTileBounds(gfx::Rect(old_tiling_size)); |
| if (min_toss_x < tiling_.num_tiles_x()) { |
| // The bounds which we want to invalidate are the tiles along the old |
| // edge of the pile. We'll call this bounding box the OLD EDGE RECT. |
| // |
| // In the picture below, the old edge rect would be the bounding box |
| // of tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index |
| // of the same tiles. |
| // |
| // old pile edge-v new pile edge-v |
| // ---------------+ - - - - - - - -+ |
| // mmppssvvyybbeeh|h . |
| // mmppssvvyybbeeh|h . |
| // nnqqttwwzzccffi|i . |
| // nnqqttwwzzccffi|i . |
| // oorruuxxaaddggj|j . |
| // oorruuxxaaddggj|j . |
| // ---------------+ - - - - - - - -+ <- old pile edge |
| // . |
| // - - - - - - - - - - - - - - - -+ <- new pile edge |
| // |
| // If you were to slide a vertical beam from the left edge of the |
| // old edge rect toward the right, it would either hit the right edge |
| // of the old edge rect, or the interest rect (expanded to the bounds |
| // of the tiles it touches). The same is true for a beam parallel to |
| // any of the four edges, sliding accross the old edge rect. We use |
| // the union of these four rectangles generated by these beams to |
| // determine which part of the old edge rect is outside of the expanded |
| // interest rect. |
| // |
| // Case 1: Intersect rect is outside the old edge rect. It can be |
| // either on the left or the right. The |left_rect| and |right_rect|, |
| // cover this case, one will be empty and one will cover the full |
| // old edge rect. In the picture below, |left_rect| would cover the |
| // old edge rect, and |right_rect| would be empty. |
| // +----------------------+ |^^^^^^^^^^^^^^^| |
| // |===> OLD EDGE RECT | | | |
| // |===> | | INTEREST RECT | |
| // |===> | | | |
| // |===> | | | |
| // +----------------------+ |vvvvvvvvvvvvvvv| |
| // |
| // Case 2: Interest rect is inside the old edge rect. It will always |
| // fill the entire old edge rect horizontally since the old edge rect |
| // is a single tile wide, and the interest rect has been expanded to the |
| // bounds of the tiles it touches. In this case the |left_rect| and |
| // |right_rect| will be empty, but the case is handled by the |top_rect| |
| // and |bottom_rect|. In the picture below, neither the |top_rect| nor |
| // |bottom_rect| would empty, they would each cover the area of the old |
| // edge rect outside the expanded interest rect. |
| // +-----------------+ |
| // |:::::::::::::::::| |
| // |:::::::::::::::::| |
| // |vvvvvvvvvvvvvvvvv| |
| // | | |
| // +-----------------+ |
| // | INTEREST RECT | |
| // | | |
| // +-----------------+ |
| // | | |
| // | OLD EDGE RECT | |
| // +-----------------+ |
| // |
| // Lastly, we need to consider tiles inside the expanded interest rect. |
| // For those tiles, we want to invalidate exactly the newly exposed |
| // pixels. In the picture below the tiles in the old edge rect have been |
| // resized and the area covered by periods must be invalidated. The |
| // |exposed_rect| will cover exactly that area. |
| // v-old pile edge |
| // +---------+-------+ |
| // | ........| |
| // | ........| |
| // | OLD EDGE.RECT..| |
| // | ........| |
| // | ........| |
| // | ........| |
| // | ........| |
| // | ........| |
| // | ........| |
| // +---------+-------+ |
| |
| int left = tiling_.TilePositionX(min_toss_x); |
| int right = left + tiling_.TileSizeX(min_toss_x); |
| int top = old_tiling_rect_over_tiles.y(); |
| int bottom = old_tiling_rect_over_tiles.bottom(); |
| |
| int left_until = std::min(interest_rect_over_tiles.x(), right); |
| int right_until = std::max(interest_rect_over_tiles.right(), left); |
| int top_until = std::min(interest_rect_over_tiles.y(), bottom); |
| int bottom_until = std::max(interest_rect_over_tiles.bottom(), top); |
| |
| int exposed_left = old_tiling_size.width(); |
| int exposed_left_until = tiling_size().width(); |
| int exposed_top = top; |
| int exposed_bottom = tiling_size().height(); |
| DCHECK_GE(exposed_left, left); |
| |
| gfx::Rect left_rect(left, top, left_until - left, bottom - top); |
| gfx::Rect right_rect(right_until, top, right - right_until, bottom - top); |
| gfx::Rect top_rect(left, top, right - left, top_until - top); |
| gfx::Rect bottom_rect( |
| left, bottom_until, right - left, bottom - bottom_until); |
| gfx::Rect exposed_rect(exposed_left, |
| exposed_top, |
| exposed_left_until - exposed_left, |
| exposed_bottom - exposed_top); |
| resize_invalidation.Union(left_rect); |
| resize_invalidation.Union(right_rect); |
| resize_invalidation.Union(top_rect); |
| resize_invalidation.Union(bottom_rect); |
| resize_invalidation.Union(exposed_rect); |
| } |
| if (min_toss_y < tiling_.num_tiles_y()) { |
| // The same thing occurs here as in the case above, but the invalidation |
| // rect is the bounding box around the bottom row of tiles in the old |
| // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture. |
| |
| int top = tiling_.TilePositionY(min_toss_y); |
| int bottom = top + tiling_.TileSizeY(min_toss_y); |
| int left = old_tiling_rect_over_tiles.x(); |
| int right = old_tiling_rect_over_tiles.right(); |
| |
| int top_until = std::min(interest_rect_over_tiles.y(), bottom); |
| int bottom_until = std::max(interest_rect_over_tiles.bottom(), top); |
| int left_until = std::min(interest_rect_over_tiles.x(), right); |
| int right_until = std::max(interest_rect_over_tiles.right(), left); |
| |
| int exposed_top = old_tiling_size.height(); |
| int exposed_top_until = tiling_size().height(); |
| int exposed_left = left; |
| int exposed_right = tiling_size().width(); |
| DCHECK_GE(exposed_top, top); |
| |
| gfx::Rect left_rect(left, top, left_until - left, bottom - top); |
| gfx::Rect right_rect(right_until, top, right - right_until, bottom - top); |
| gfx::Rect top_rect(left, top, right - left, top_until - top); |
| gfx::Rect bottom_rect( |
| left, bottom_until, right - left, bottom - bottom_until); |
| gfx::Rect exposed_rect(exposed_left, |
| exposed_top, |
| exposed_right - exposed_left, |
| exposed_top_until - exposed_top); |
| resize_invalidation.Union(left_rect); |
| resize_invalidation.Union(right_rect); |
| resize_invalidation.Union(top_rect); |
| resize_invalidation.Union(bottom_rect); |
| resize_invalidation.Union(exposed_rect); |
| } |
| } |
| |
| Region invalidation_expanded_to_full_tiles; |
| for (Region::Iterator i(*invalidation); i.has_rect(); i.next()) { |
| gfx::Rect invalid_rect = i.rect(); |
| |
| // Expand invalidation that is outside tiles that intersect the interest |
| // rect. These tiles are no longer valid and should be considerered fully |
| // invalid, so we can know to not keep around raster tiles that intersect |
| // with these recording tiles. |
| gfx::Rect invalid_rect_outside_interest_rect_tiles = invalid_rect; |
| // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator |
| // instead of using Rect::Subtract which gives you the bounding box of the |
| // subtraction. |
| invalid_rect_outside_interest_rect_tiles.Subtract(interest_rect_over_tiles); |
| invalidation_expanded_to_full_tiles.Union(tiling_.ExpandRectToTileBounds( |
| invalid_rect_outside_interest_rect_tiles)); |
| |
| // Split this inflated invalidation across tile boundaries and apply it |
| // to all tiles that it touches. |
| bool include_borders = true; |
| for (TilingData::Iterator iter(&tiling_, invalid_rect, include_borders); |
| iter; |
| ++iter) { |
| const PictureMapKey& key = iter.index(); |
| |
| PictureMap::iterator picture_it = picture_map_.find(key); |
| if (picture_it == picture_map_.end()) |
| continue; |
| |
| // Inform the grid cell that it has been invalidated in this frame. |
| updated = picture_it->second.Invalidate(frame_number) || updated; |
| // Invalidate drops the picture so the whole tile better be invalidated if |
| // it won't be re-recorded below. |
| DCHECK_IMPLIES(!tiling_.TileBounds(key.first, key.second) |
| .Intersects(interest_rect_over_tiles), |
| invalidation_expanded_to_full_tiles.Contains( |
| tiling_.TileBounds(key.first, key.second))); |
| } |
| } |
| |
| invalidation->Union(invalidation_expanded_to_full_tiles); |
| invalidation->Union(resize_invalidation); |
| |
| // Make a list of all invalid tiles; we will attempt to |
| // cluster these into multiple invalidation regions. |
| std::vector<gfx::Rect> invalid_tiles; |
| bool include_borders = true; |
| for (TilingData::Iterator it(&tiling_, interest_rect, include_borders); it; |
| ++it) { |
| const PictureMapKey& key = it.index(); |
| PictureInfo& info = picture_map_[key]; |
| |
| gfx::Rect rect = PaddedRect(key); |
| int distance_to_visible = |
| rect.ManhattanInternalDistance(visible_layer_rect); |
| |
| if (info.NeedsRecording(frame_number, distance_to_visible)) { |
| gfx::Rect tile = tiling_.TileBounds(key.first, key.second); |
| invalid_tiles.push_back(tile); |
| } else if (!info.GetPicture()) { |
| if (recorded_viewport_.Intersects(rect)) { |
| // Recorded viewport is just an optimization for a fully recorded |
| // interest rect. In this case, a tile in that rect has declined |
| // to be recorded (probably due to frequent invalidations). |
| // TODO(enne): Shrink the recorded_viewport_ rather than clearing. |
| recorded_viewport_ = gfx::Rect(); |
| } |
| |
| // If a tile in the interest rect is not recorded, the entire tile needs |
| // to be considered invalid, so that we know not to keep around raster |
| // tiles that intersect this recording tile. |
| invalidation->Union(tiling_.TileBounds(it.index_x(), it.index_y())); |
| } |
| } |
| |
| std::vector<gfx::Rect> record_rects; |
| ClusterTiles(invalid_tiles, &record_rects); |
| |
| if (record_rects.empty()) |
| return updated; |
| |
| for (std::vector<gfx::Rect>::iterator it = record_rects.begin(); |
| it != record_rects.end(); |
| it++) { |
| gfx::Rect record_rect = *it; |
| record_rect = PadRect(record_rect); |
| |
| int repeat_count = std::max(1, slow_down_raster_scale_factor_for_debug_); |
| scoped_refptr<Picture> picture; |
| |
| // Note: Currently, gathering of pixel refs when using a single |
| // raster thread doesn't provide any benefit. This might change |
| // in the future but we avoid it for now to reduce the cost of |
| // Picture::Create. |
| bool gather_pixel_refs = RasterWorkerPool::GetNumRasterThreads() > 1; |
| |
| { |
| base::TimeDelta best_duration = base::TimeDelta::Max(); |
| for (int i = 0; i < repeat_count; i++) { |
| base::TimeTicks start_time = stats_instrumentation->StartRecording(); |
| picture = Picture::Create(record_rect, |
| painter, |
| tile_grid_info_, |
| gather_pixel_refs, |
| recording_mode); |
| // Note the '&&' with previous is-suitable state. |
| // This means that once a picture-pile becomes unsuitable for gpu |
| // rasterization due to some content, it will continue to be unsuitable |
| // even if that content is replaced by gpu-friendly content. |
| // This is an optimization to avoid iterating though all pictures in |
| // the pile after each invalidation. |
| is_suitable_for_gpu_rasterization_ &= |
| picture->IsSuitableForGpuRasterization(); |
| has_text_ |= picture->HasText(); |
| base::TimeDelta duration = |
| stats_instrumentation->EndRecording(start_time); |
| best_duration = std::min(duration, best_duration); |
| } |
| int recorded_pixel_count = |
| picture->LayerRect().width() * picture->LayerRect().height(); |
| stats_instrumentation->AddRecord(best_duration, recorded_pixel_count); |
| } |
| |
| bool found_tile_for_recorded_picture = false; |
| |
| bool include_borders = true; |
| for (TilingData::Iterator it(&tiling_, record_rect, include_borders); it; |
| ++it) { |
| const PictureMapKey& key = it.index(); |
| gfx::Rect tile = PaddedRect(key); |
| if (record_rect.Contains(tile)) { |
| PictureInfo& info = picture_map_[key]; |
| info.SetPicture(picture); |
| found_tile_for_recorded_picture = true; |
| } |
| } |
| DetermineIfSolidColor(); |
| DCHECK(found_tile_for_recorded_picture); |
| } |
| |
| has_any_recordings_ = true; |
| DCHECK(CanRasterSlowTileCheck(recorded_viewport_)); |
| return true; |
| } |
| |
| void PicturePile::SetEmptyBounds() { |
| tiling_.SetTilingSize(gfx::Size()); |
| picture_map_.clear(); |
| has_any_recordings_ = false; |
| recorded_viewport_ = gfx::Rect(); |
| } |
| |
| void PicturePile::DetermineIfSolidColor() { |
| is_solid_color_ = false; |
| solid_color_ = SK_ColorTRANSPARENT; |
| |
| if (picture_map_.empty()) { |
| return; |
| } |
| |
| PictureMap::const_iterator it = picture_map_.begin(); |
| const Picture* picture = it->second.GetPicture(); |
| |
| // Missing recordings due to frequent invalidations or being too far away |
| // from the interest rect will cause the a null picture to exist. |
| if (!picture) |
| return; |
| |
| // Don't bother doing more work if the first image is too complicated. |
| if (picture->ApproximateOpCount() > kOpCountThatIsOkToAnalyze) |
| return; |
| |
| // Make sure all of the mapped images point to the same picture. |
| for (++it; it != picture_map_.end(); ++it) { |
| if (it->second.GetPicture() != picture) |
| return; |
| } |
| skia::AnalysisCanvas canvas(recorded_viewport_.width(), |
| recorded_viewport_.height()); |
| picture->Raster(&canvas, NULL, Region(), 1.0f); |
| is_solid_color_ = canvas.GetColorIfSolid(&solid_color_); |
| } |
| |
| } // namespace cc |