| // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This is the implementation of decompression of the proposed WOFF Ultra |
| // Condensed file format. |
| |
| #include <cassert> |
| #include <cstdlib> |
| #include <vector> |
| |
| #include "third_party/brotli/src/brotli/dec/decode.h" |
| |
| #include "opentype-sanitiser.h" |
| #include "ots-memory-stream.h" |
| #include "ots.h" |
| #include "woff2.h" |
| |
| #define TABLE_NAME "WOFF2" |
| |
| namespace { |
| |
| // simple glyph flags |
| const uint8_t kGlyfOnCurve = 1 << 0; |
| const uint8_t kGlyfXShort = 1 << 1; |
| const uint8_t kGlyfYShort = 1 << 2; |
| const uint8_t kGlyfRepeat = 1 << 3; |
| const uint8_t kGlyfThisXIsSame = 1 << 4; |
| const uint8_t kGlyfThisYIsSame = 1 << 5; |
| |
| // composite glyph flags |
| const int FLAG_ARG_1_AND_2_ARE_WORDS = 1 << 0; |
| const int FLAG_WE_HAVE_A_SCALE = 1 << 3; |
| const int FLAG_MORE_COMPONENTS = 1 << 5; |
| const int FLAG_WE_HAVE_AN_X_AND_Y_SCALE = 1 << 6; |
| const int FLAG_WE_HAVE_A_TWO_BY_TWO = 1 << 7; |
| const int FLAG_WE_HAVE_INSTRUCTIONS = 1 << 8; |
| |
| const size_t kSfntHeaderSize = 12; |
| const size_t kSfntEntrySize = 16; |
| const size_t kCheckSumAdjustmentOffset = 8; |
| |
| const size_t kEndPtsOfContoursOffset = 10; |
| const size_t kCompositeGlyphBegin = 10; |
| |
| // Note that the byte order is big-endian, not the same as ots.cc |
| #define TAG(a, b, c, d) ((a << 24) | (b << 16) | (c << 8) | d) |
| |
| const unsigned int kWoff2FlagsTransform = 1 << 5; |
| |
| const uint32_t kKnownTags[] = { |
| TAG('c', 'm', 'a', 'p'), // 0 |
| TAG('h', 'e', 'a', 'd'), // 1 |
| TAG('h', 'h', 'e', 'a'), // 2 |
| TAG('h', 'm', 't', 'x'), // 3 |
| TAG('m', 'a', 'x', 'p'), // 4 |
| TAG('n', 'a', 'm', 'e'), // 5 |
| TAG('O', 'S', '/', '2'), // 6 |
| TAG('p', 'o', 's', 't'), // 7 |
| TAG('c', 'v', 't', ' '), // 8 |
| TAG('f', 'p', 'g', 'm'), // 9 |
| TAG('g', 'l', 'y', 'f'), // 10 |
| TAG('l', 'o', 'c', 'a'), // 11 |
| TAG('p', 'r', 'e', 'p'), // 12 |
| TAG('C', 'F', 'F', ' '), // 13 |
| TAG('V', 'O', 'R', 'G'), // 14 |
| TAG('E', 'B', 'D', 'T'), // 15 |
| TAG('E', 'B', 'L', 'C'), // 16 |
| TAG('g', 'a', 's', 'p'), // 17 |
| TAG('h', 'd', 'm', 'x'), // 18 |
| TAG('k', 'e', 'r', 'n'), // 19 |
| TAG('L', 'T', 'S', 'H'), // 20 |
| TAG('P', 'C', 'L', 'T'), // 21 |
| TAG('V', 'D', 'M', 'X'), // 22 |
| TAG('v', 'h', 'e', 'a'), // 23 |
| TAG('v', 'm', 't', 'x'), // 24 |
| TAG('B', 'A', 'S', 'E'), // 25 |
| TAG('G', 'D', 'E', 'F'), // 26 |
| TAG('G', 'P', 'O', 'S'), // 27 |
| TAG('G', 'S', 'U', 'B'), // 28 |
| TAG('E', 'B', 'S', 'C'), // 29 |
| TAG('J', 'S', 'T', 'F'), // 30 |
| TAG('M', 'A', 'T', 'H'), // 31 |
| TAG('C', 'B', 'D', 'T'), // 32 |
| TAG('C', 'B', 'L', 'C'), // 33 |
| TAG('C', 'O', 'L', 'R'), // 34 |
| TAG('C', 'P', 'A', 'L'), // 35 |
| TAG('S', 'V', 'G', ' '), // 36 |
| TAG('s', 'b', 'i', 'x'), // 37 |
| TAG('a', 'c', 'n', 't'), // 38 |
| TAG('a', 'v', 'a', 'r'), // 39 |
| TAG('b', 'd', 'a', 't'), // 40 |
| TAG('b', 'l', 'o', 'c'), // 41 |
| TAG('b', 's', 'l', 'n'), // 42 |
| TAG('c', 'v', 'a', 'r'), // 43 |
| TAG('f', 'd', 's', 'c'), // 44 |
| TAG('f', 'e', 'a', 't'), // 45 |
| TAG('f', 'm', 't', 'x'), // 46 |
| TAG('f', 'v', 'a', 'r'), // 47 |
| TAG('g', 'v', 'a', 'r'), // 48 |
| TAG('h', 's', 't', 'y'), // 49 |
| TAG('j', 'u', 's', 't'), // 50 |
| TAG('l', 'c', 'a', 'r'), // 51 |
| TAG('m', 'o', 'r', 't'), // 52 |
| TAG('m', 'o', 'r', 'x'), // 53 |
| TAG('o', 'p', 'b', 'd'), // 54 |
| TAG('p', 'r', 'o', 'p'), // 55 |
| TAG('t', 'r', 'a', 'k'), // 56 |
| TAG('Z', 'a', 'p', 'f'), // 57 |
| TAG('S', 'i', 'l', 'f'), // 58 |
| TAG('G', 'l', 'a', 't'), // 59 |
| TAG('G', 'l', 'o', 'c'), // 60 |
| TAG('F', 'e', 'a', 't'), // 61 |
| TAG('S', 'i', 'l', 'l'), // 62 |
| }; |
| |
| struct Point { |
| int16_t x; |
| int16_t y; |
| bool on_curve; |
| }; |
| |
| struct Table { |
| uint32_t tag; |
| uint32_t flags; |
| |
| uint32_t transform_length; |
| |
| uint32_t dst_offset; |
| uint32_t dst_length; |
| |
| Table() |
| : tag(0), |
| flags(0), |
| transform_length(0), |
| dst_offset(0), |
| dst_length(0) {} |
| }; |
| |
| // Based on section 6.1.1 of MicroType Express draft spec |
| bool Read255UShort(ots::Buffer* buf, uint16_t* value) { |
| static const uint8_t kWordCode = 253; |
| static const uint8_t kOneMoreByteCode2 = 254; |
| static const uint8_t kOneMoreByteCode1 = 255; |
| static const uint8_t kLowestUCode = 253; |
| uint8_t code = 0; |
| if (!buf->ReadU8(&code)) { |
| return OTS_FAILURE(); |
| } |
| if (code == kWordCode) { |
| uint16_t result = 0; |
| if (!buf->ReadU16(&result)) { |
| return OTS_FAILURE(); |
| } |
| *value = result; |
| return true; |
| } else if (code == kOneMoreByteCode1) { |
| uint8_t result = 0; |
| if (!buf->ReadU8(&result)) { |
| return OTS_FAILURE(); |
| } |
| *value = result + kLowestUCode; |
| return true; |
| } else if (code == kOneMoreByteCode2) { |
| uint8_t result = 0; |
| if (!buf->ReadU8(&result)) { |
| return OTS_FAILURE(); |
| } |
| *value = result + kLowestUCode * 2; |
| return true; |
| } else { |
| *value = code; |
| return true; |
| } |
| } |
| |
| bool ReadBase128(ots::Buffer* buf, uint32_t* value) { |
| uint32_t result = 0; |
| for (size_t i = 0; i < 5; ++i) { |
| uint8_t code = 0; |
| if (!buf->ReadU8(&code)) { |
| return OTS_FAILURE(); |
| } |
| // If any of the top seven bits are set then we're about to overflow. |
| if (result & 0xfe000000U) { |
| return OTS_FAILURE(); |
| } |
| result = (result << 7) | (code & 0x7f); |
| if ((code & 0x80) == 0) { |
| *value = result; |
| return true; |
| } |
| } |
| // Make sure not to exceed the size bound |
| return OTS_FAILURE(); |
| } |
| |
| // Caller must ensure that buffer overrun won't happen. |
| // TODO(ksakamaoto): Consider creating 'writer' version of the Buffer class |
| // and use it across the code. |
| size_t StoreU32(uint8_t* dst, size_t offset, uint32_t x) { |
| dst[offset] = x >> 24; |
| dst[offset + 1] = (x >> 16) & 0xff; |
| dst[offset + 2] = (x >> 8) & 0xff; |
| dst[offset + 3] = x & 0xff; |
| return offset + 4; |
| } |
| |
| size_t StoreU16(uint8_t* dst, size_t offset, uint16_t x) { |
| dst[offset] = x >> 8; |
| dst[offset + 1] = x & 0xff; |
| return offset + 2; |
| } |
| |
| int WithSign(int flag, int baseval) { |
| assert(0 <= baseval && baseval < 65536); |
| return (flag & 1) ? baseval : -baseval; |
| } |
| |
| bool TripletDecode(const uint8_t* flags_in, const uint8_t* in, size_t in_size, |
| unsigned int n_points, std::vector<Point>* result, |
| size_t* in_bytes_consumed) { |
| int x = 0; |
| int y = 0; |
| |
| // Early return if |in| buffer is too small. Each point consumes 1-4 bytes. |
| if (n_points > in_size) { |
| return OTS_FAILURE(); |
| } |
| unsigned int triplet_index = 0; |
| |
| for (unsigned int i = 0; i < n_points; ++i) { |
| uint8_t flag = flags_in[i]; |
| bool on_curve = !(flag >> 7); |
| flag &= 0x7f; |
| unsigned int n_data_bytes; |
| if (flag < 84) { |
| n_data_bytes = 1; |
| } else if (flag < 120) { |
| n_data_bytes = 2; |
| } else if (flag < 124) { |
| n_data_bytes = 3; |
| } else { |
| n_data_bytes = 4; |
| } |
| if (triplet_index + n_data_bytes > in_size || |
| triplet_index + n_data_bytes < triplet_index) { |
| return OTS_FAILURE(); |
| } |
| int dx, dy; |
| if (flag < 10) { |
| dx = 0; |
| dy = WithSign(flag, ((flag & 14) << 7) + in[triplet_index]); |
| } else if (flag < 20) { |
| dx = WithSign(flag, (((flag - 10) & 14) << 7) + in[triplet_index]); |
| dy = 0; |
| } else if (flag < 84) { |
| int b0 = flag - 20; |
| int b1 = in[triplet_index]; |
| dx = WithSign(flag, 1 + (b0 & 0x30) + (b1 >> 4)); |
| dy = WithSign(flag >> 1, 1 + ((b0 & 0x0c) << 2) + (b1 & 0x0f)); |
| } else if (flag < 120) { |
| int b0 = flag - 84; |
| dx = WithSign(flag, 1 + ((b0 / 12) << 8) + in[triplet_index]); |
| dy = WithSign(flag >> 1, |
| 1 + (((b0 % 12) >> 2) << 8) + in[triplet_index + 1]); |
| } else if (flag < 124) { |
| int b2 = in[triplet_index + 1]; |
| dx = WithSign(flag, (in[triplet_index] << 4) + (b2 >> 4)); |
| dy = WithSign(flag >> 1, ((b2 & 0x0f) << 8) + in[triplet_index + 2]); |
| } else { |
| dx = WithSign(flag, (in[triplet_index] << 8) + in[triplet_index + 1]); |
| dy = WithSign(flag >> 1, |
| (in[triplet_index + 2] << 8) + in[triplet_index + 3]); |
| } |
| triplet_index += n_data_bytes; |
| // Possible overflow but coordinate values are not security sensitive |
| x += dx; |
| y += dy; |
| result->push_back(Point()); |
| Point& back = result->back(); |
| back.x = static_cast<int16_t>(x); |
| back.y = static_cast<int16_t>(y); |
| back.on_curve = on_curve; |
| } |
| *in_bytes_consumed = triplet_index; |
| return true; |
| } |
| |
| // This function stores just the point data. On entry, dst points to the |
| // beginning of a simple glyph. Returns true on success. |
| bool StorePoints(const std::vector<Point>& points, |
| unsigned int n_contours, unsigned int instruction_length, |
| uint8_t* dst, size_t dst_size, size_t* glyph_size) { |
| // I believe that n_contours < 65536, in which case this is safe. However, a |
| // comment and/or an assert would be good. |
| unsigned int flag_offset = kEndPtsOfContoursOffset + 2 * n_contours + 2 + |
| instruction_length; |
| uint8_t last_flag = 0xff; |
| uint8_t repeat_count = 0; |
| int last_x = 0; |
| int last_y = 0; |
| unsigned int x_bytes = 0; |
| unsigned int y_bytes = 0; |
| |
| for (size_t i = 0; i < points.size(); ++i) { |
| const Point& point = points.at(i); |
| uint8_t flag = point.on_curve ? kGlyfOnCurve : 0; |
| int dx = point.x - last_x; |
| int dy = point.y - last_y; |
| if (dx == 0) { |
| flag |= kGlyfThisXIsSame; |
| } else if (dx > -256 && dx < 256) { |
| flag |= kGlyfXShort | (dx > 0 ? kGlyfThisXIsSame : 0); |
| x_bytes += 1; |
| } else { |
| x_bytes += 2; |
| } |
| if (dy == 0) { |
| flag |= kGlyfThisYIsSame; |
| } else if (dy > -256 && dy < 256) { |
| flag |= kGlyfYShort | (dy > 0 ? kGlyfThisYIsSame : 0); |
| y_bytes += 1; |
| } else { |
| y_bytes += 2; |
| } |
| |
| if (flag == last_flag && repeat_count != 255) { |
| dst[flag_offset - 1] |= kGlyfRepeat; |
| repeat_count++; |
| } else { |
| if (repeat_count != 0) { |
| if (flag_offset >= dst_size) { |
| return OTS_FAILURE(); |
| } |
| dst[flag_offset++] = repeat_count; |
| } |
| if (flag_offset >= dst_size) { |
| return OTS_FAILURE(); |
| } |
| dst[flag_offset++] = flag; |
| repeat_count = 0; |
| } |
| last_x = point.x; |
| last_y = point.y; |
| last_flag = flag; |
| } |
| |
| if (repeat_count != 0) { |
| if (flag_offset >= dst_size) { |
| return OTS_FAILURE(); |
| } |
| dst[flag_offset++] = repeat_count; |
| } |
| unsigned int xy_bytes = x_bytes + y_bytes; |
| if (xy_bytes < x_bytes || |
| flag_offset + xy_bytes < flag_offset || |
| flag_offset + xy_bytes > dst_size) { |
| return OTS_FAILURE(); |
| } |
| |
| int x_offset = flag_offset; |
| int y_offset = flag_offset + x_bytes; |
| last_x = 0; |
| last_y = 0; |
| for (size_t i = 0; i < points.size(); ++i) { |
| int dx = points.at(i).x - last_x; |
| if (dx == 0) { |
| // pass |
| } else if (dx > -256 && dx < 256) { |
| dst[x_offset++] = static_cast<uint8_t>(std::abs(dx)); |
| } else { |
| // will always fit for valid input, but overflow is harmless |
| x_offset = StoreU16(dst, x_offset, static_cast<uint16_t>(dx)); |
| } |
| last_x += dx; |
| int dy = points.at(i).y - last_y; |
| if (dy == 0) { |
| // pass |
| } else if (dy > -256 && dy < 256) { |
| dst[y_offset++] = static_cast<uint8_t>(std::abs(dy)); |
| } else { |
| y_offset = StoreU16(dst, y_offset, static_cast<uint16_t>(dy)); |
| } |
| last_y += dy; |
| } |
| *glyph_size = y_offset; |
| return true; |
| } |
| |
| // Compute the bounding box of the coordinates, and store into a glyf buffer. |
| // A precondition is that there are at least 10 bytes available. |
| void ComputeBbox(const std::vector<Point>& points, uint8_t* dst) { |
| int16_t x_min = 0; |
| int16_t y_min = 0; |
| int16_t x_max = 0; |
| int16_t y_max = 0; |
| |
| for (size_t i = 0; i < points.size(); ++i) { |
| int16_t x = points.at(i).x; |
| int16_t y = points.at(i).y; |
| if (i == 0 || x < x_min) x_min = x; |
| if (i == 0 || x > x_max) x_max = x; |
| if (i == 0 || y < y_min) y_min = y; |
| if (i == 0 || y > y_max) y_max = y; |
| } |
| size_t offset = 2; |
| offset = StoreU16(dst, offset, x_min); |
| offset = StoreU16(dst, offset, y_min); |
| offset = StoreU16(dst, offset, x_max); |
| offset = StoreU16(dst, offset, y_max); |
| } |
| |
| // Process entire bbox stream. This is done as a separate pass to allow for |
| // composite bbox computations (an optional more aggressive transform). |
| bool ProcessBboxStream(ots::Buffer* bbox_stream, unsigned int n_glyphs, |
| const std::vector<uint32_t>& loca_values, uint8_t* glyf_buf, |
| size_t glyf_buf_length) { |
| const uint8_t* buf = bbox_stream->buffer(); |
| if (n_glyphs >= 65536 || loca_values.size() != n_glyphs + 1) { |
| return OTS_FAILURE(); |
| } |
| // Safe because n_glyphs is bounded |
| unsigned int bitmap_length = ((n_glyphs + 31) >> 5) << 2; |
| if (!bbox_stream->Skip(bitmap_length)) { |
| return OTS_FAILURE(); |
| } |
| for (unsigned int i = 0; i < n_glyphs; ++i) { |
| if (buf[i >> 3] & (0x80 >> (i & 7))) { |
| uint32_t loca_offset = loca_values.at(i); |
| if (loca_values.at(i + 1) - loca_offset < kEndPtsOfContoursOffset) { |
| return OTS_FAILURE(); |
| } |
| if (glyf_buf_length < 2 + 10 || |
| loca_offset > glyf_buf_length - 2 - 10) { |
| return OTS_FAILURE(); |
| } |
| if (!bbox_stream->Read(glyf_buf + loca_offset + 2, 8)) { |
| return OTS_FAILURE(); |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool ProcessComposite(ots::Buffer* composite_stream, uint8_t* dst, |
| size_t dst_size, size_t* glyph_size, bool* have_instructions) { |
| size_t start_offset = composite_stream->offset(); |
| bool we_have_instructions = false; |
| |
| uint16_t flags = FLAG_MORE_COMPONENTS; |
| while (flags & FLAG_MORE_COMPONENTS) { |
| if (!composite_stream->ReadU16(&flags)) { |
| return OTS_FAILURE(); |
| } |
| we_have_instructions |= (flags & FLAG_WE_HAVE_INSTRUCTIONS) != 0; |
| size_t arg_size = 2; // glyph index |
| if (flags & FLAG_ARG_1_AND_2_ARE_WORDS) { |
| arg_size += 4; |
| } else { |
| arg_size += 2; |
| } |
| if (flags & FLAG_WE_HAVE_A_SCALE) { |
| arg_size += 2; |
| } else if (flags & FLAG_WE_HAVE_AN_X_AND_Y_SCALE) { |
| arg_size += 4; |
| } else if (flags & FLAG_WE_HAVE_A_TWO_BY_TWO) { |
| arg_size += 8; |
| } |
| if (!composite_stream->Skip(arg_size)) { |
| return OTS_FAILURE(); |
| } |
| } |
| size_t composite_glyph_size = composite_stream->offset() - start_offset; |
| if (composite_glyph_size + kCompositeGlyphBegin > dst_size) { |
| return OTS_FAILURE(); |
| } |
| StoreU16(dst, 0, 0xffff); // nContours = -1 for composite glyph |
| std::memcpy(dst + kCompositeGlyphBegin, |
| composite_stream->buffer() + start_offset, |
| composite_glyph_size); |
| *glyph_size = kCompositeGlyphBegin + composite_glyph_size; |
| *have_instructions = we_have_instructions; |
| return true; |
| } |
| |
| // Build TrueType loca table |
| bool StoreLoca(const std::vector<uint32_t>& loca_values, int index_format, |
| uint8_t* dst, size_t dst_size) { |
| const uint64_t loca_size = loca_values.size(); |
| const uint64_t offset_size = index_format ? 4 : 2; |
| if ((loca_size << 2) >> 2 != loca_size) { |
| return OTS_FAILURE(); |
| } |
| // No integer overflow here (loca_size <= 2^16). |
| if (offset_size * loca_size > dst_size) { |
| return OTS_FAILURE(); |
| } |
| size_t offset = 0; |
| for (size_t i = 0; i < loca_values.size(); ++i) { |
| uint32_t value = loca_values.at(i); |
| if (index_format) { |
| offset = StoreU32(dst, offset, value); |
| } else { |
| offset = StoreU16(dst, offset, static_cast<uint16_t>(value >> 1)); |
| } |
| } |
| return true; |
| } |
| |
| // Reconstruct entire glyf table based on transformed original |
| bool ReconstructGlyf(const uint8_t* data, size_t data_size, |
| uint8_t* dst, size_t dst_size, |
| uint8_t* loca_buf, size_t loca_size) { |
| static const int kNumSubStreams = 7; |
| ots::Buffer file(data, data_size); |
| uint32_t version; |
| std::vector<std::pair<const uint8_t*, size_t> > substreams(kNumSubStreams); |
| |
| if (!file.ReadU32(&version)) { |
| return OTS_FAILURE(); |
| } |
| uint16_t num_glyphs; |
| uint16_t index_format; |
| if (!file.ReadU16(&num_glyphs) || |
| !file.ReadU16(&index_format)) { |
| return OTS_FAILURE(); |
| } |
| unsigned int offset = (2 + kNumSubStreams) * 4; |
| if (offset > data_size) { |
| return OTS_FAILURE(); |
| } |
| // Invariant from here on: data_size >= offset |
| for (int i = 0; i < kNumSubStreams; ++i) { |
| uint32_t substream_size; |
| if (!file.ReadU32(&substream_size)) { |
| return OTS_FAILURE(); |
| } |
| if (substream_size > data_size - offset) { |
| return OTS_FAILURE(); |
| } |
| substreams.at(i) = std::make_pair(data + offset, substream_size); |
| offset += substream_size; |
| } |
| ots::Buffer n_contour_stream(substreams.at(0).first, substreams.at(0).second); |
| ots::Buffer n_points_stream(substreams.at(1).first, substreams.at(1).second); |
| ots::Buffer flag_stream(substreams.at(2).first, substreams.at(2).second); |
| ots::Buffer glyph_stream(substreams.at(3).first, substreams.at(3).second); |
| ots::Buffer composite_stream(substreams.at(4).first, substreams.at(4).second); |
| ots::Buffer bbox_stream(substreams.at(5).first, substreams.at(5).second); |
| ots::Buffer instruction_stream(substreams.at(6).first, |
| substreams.at(6).second); |
| |
| std::vector<uint32_t> loca_values; |
| loca_values.reserve(num_glyphs + 1); |
| std::vector<uint16_t> n_points_vec; |
| std::vector<Point> points; |
| uint32_t loca_offset = 0; |
| for (unsigned int i = 0; i < num_glyphs; ++i) { |
| size_t glyph_size = 0; |
| uint16_t n_contours = 0; |
| if (!n_contour_stream.ReadU16(&n_contours)) { |
| return OTS_FAILURE(); |
| } |
| uint8_t* glyf_dst = dst + loca_offset; |
| size_t glyf_dst_size = dst_size - loca_offset; |
| if (n_contours == 0xffff) { |
| // composite glyph |
| bool have_instructions = false; |
| uint16_t instruction_size = 0; |
| if (!ProcessComposite(&composite_stream, glyf_dst, glyf_dst_size, |
| &glyph_size, &have_instructions)) { |
| return OTS_FAILURE(); |
| } |
| if (have_instructions) { |
| if (!Read255UShort(&glyph_stream, &instruction_size)) { |
| return OTS_FAILURE(); |
| } |
| // No integer overflow here (instruction_size < 2^16). |
| if (instruction_size + 2U > glyf_dst_size - glyph_size) { |
| return OTS_FAILURE(); |
| } |
| StoreU16(glyf_dst, glyph_size, instruction_size); |
| if (!instruction_stream.Read(glyf_dst + glyph_size + 2, |
| instruction_size)) { |
| return OTS_FAILURE(); |
| } |
| glyph_size += instruction_size + 2; |
| } |
| } else if (n_contours > 0) { |
| // simple glyph |
| n_points_vec.clear(); |
| points.clear(); |
| uint32_t total_n_points = 0; |
| uint16_t n_points_contour; |
| for (uint32_t j = 0; j < n_contours; ++j) { |
| if (!Read255UShort(&n_points_stream, &n_points_contour)) { |
| return OTS_FAILURE(); |
| } |
| n_points_vec.push_back(n_points_contour); |
| if (total_n_points + n_points_contour < total_n_points) { |
| return OTS_FAILURE(); |
| } |
| total_n_points += n_points_contour; |
| } |
| uint32_t flag_size = total_n_points; |
| if (flag_size > flag_stream.length() - flag_stream.offset()) { |
| return OTS_FAILURE(); |
| } |
| const uint8_t* flags_buf = flag_stream.buffer() + flag_stream.offset(); |
| const uint8_t* triplet_buf = glyph_stream.buffer() + |
| glyph_stream.offset(); |
| size_t triplet_size = glyph_stream.length() - glyph_stream.offset(); |
| size_t triplet_bytes_consumed = 0; |
| if (!TripletDecode(flags_buf, triplet_buf, triplet_size, total_n_points, |
| &points, &triplet_bytes_consumed)) { |
| return OTS_FAILURE(); |
| } |
| const uint32_t header_and_endpts_contours_size = |
| kEndPtsOfContoursOffset + 2 * n_contours; |
| if (glyf_dst_size < header_and_endpts_contours_size) { |
| return OTS_FAILURE(); |
| } |
| StoreU16(glyf_dst, 0, n_contours); |
| ComputeBbox(points, glyf_dst); |
| size_t endpts_offset = kEndPtsOfContoursOffset; |
| int end_point = -1; |
| for (unsigned int contour_ix = 0; contour_ix < n_contours; ++contour_ix) { |
| end_point += n_points_vec.at(contour_ix); |
| if (end_point >= 65536) { |
| return OTS_FAILURE(); |
| } |
| endpts_offset = StoreU16(glyf_dst, endpts_offset, static_cast<uint16_t>(end_point)); |
| } |
| if (!flag_stream.Skip(flag_size)) { |
| return OTS_FAILURE(); |
| } |
| if (!glyph_stream.Skip(triplet_bytes_consumed)) { |
| return OTS_FAILURE(); |
| } |
| uint16_t instruction_size; |
| if (!Read255UShort(&glyph_stream, &instruction_size)) { |
| return OTS_FAILURE(); |
| } |
| // No integer overflow here (instruction_size < 2^16). |
| if (glyf_dst_size - header_and_endpts_contours_size < |
| instruction_size + 2U) { |
| return OTS_FAILURE(); |
| } |
| uint8_t* instruction_dst = glyf_dst + header_and_endpts_contours_size; |
| StoreU16(instruction_dst, 0, instruction_size); |
| if (!instruction_stream.Read(instruction_dst + 2, instruction_size)) { |
| return OTS_FAILURE(); |
| } |
| if (!StorePoints(points, n_contours, instruction_size, |
| glyf_dst, glyf_dst_size, &glyph_size)) { |
| return OTS_FAILURE(); |
| } |
| } else { |
| glyph_size = 0; |
| } |
| loca_values.push_back(loca_offset); |
| if (glyph_size + 3 < glyph_size) { |
| return OTS_FAILURE(); |
| } |
| glyph_size = ots::Round2(glyph_size); |
| if (glyph_size > dst_size - loca_offset) { |
| // This shouldn't happen, but this test defensively maintains the |
| // invariant that loca_offset <= dst_size. |
| return OTS_FAILURE(); |
| } |
| loca_offset += glyph_size; |
| } |
| loca_values.push_back(loca_offset); |
| assert(loca_values.size() == static_cast<size_t>(num_glyphs + 1)); |
| if (!ProcessBboxStream(&bbox_stream, num_glyphs, loca_values, |
| dst, dst_size)) { |
| return OTS_FAILURE(); |
| } |
| return StoreLoca(loca_values, index_format, loca_buf, loca_size); |
| } |
| |
| // This is linear search, but could be changed to binary because we |
| // do have a guarantee that the tables are sorted by tag. But the total |
| // cpu time is expected to be very small in any case. |
| const Table* FindTable(const std::vector<Table>& tables, uint32_t tag) { |
| size_t n_tables = tables.size(); |
| for (size_t i = 0; i < n_tables; ++i) { |
| if (tables.at(i).tag == tag) { |
| return &tables.at(i); |
| } |
| } |
| return NULL; |
| } |
| |
| bool ReconstructTransformed(const std::vector<Table>& tables, uint32_t tag, |
| const uint8_t* transformed_buf, size_t transformed_size, |
| uint8_t* dst, size_t dst_length) { |
| if (tag == TAG('g', 'l', 'y', 'f')) { |
| const Table* glyf_table = FindTable(tables, tag); |
| const Table* loca_table = FindTable(tables, TAG('l', 'o', 'c', 'a')); |
| if (glyf_table == NULL || loca_table == NULL) { |
| return OTS_FAILURE(); |
| } |
| if (static_cast<uint64_t>(glyf_table->dst_offset) + glyf_table->dst_length > |
| dst_length) { |
| return OTS_FAILURE(); |
| } |
| if (static_cast<uint64_t>(loca_table->dst_offset) + loca_table->dst_length > |
| dst_length) { |
| return OTS_FAILURE(); |
| } |
| return ReconstructGlyf(transformed_buf, transformed_size, |
| dst + glyf_table->dst_offset, glyf_table->dst_length, |
| dst + loca_table->dst_offset, loca_table->dst_length); |
| } else if (tag == TAG('l', 'o', 'c', 'a')) { |
| // processing was already done by glyf table, but validate |
| if (!FindTable(tables, TAG('g', 'l', 'y', 'f'))) { |
| return OTS_FAILURE(); |
| } |
| } else { |
| // transform for the tag is not known |
| return OTS_FAILURE(); |
| } |
| return true; |
| } |
| |
| uint32_t ComputeChecksum(const uint8_t* buf, size_t size) { |
| uint32_t checksum = 0; |
| for (size_t i = 0; i < size; i += 4) { |
| // We assume the addition is mod 2^32, which is valid because unsigned |
| checksum += (buf[i] << 24) | (buf[i + 1] << 16) | |
| (buf[i + 2] << 8) | buf[i + 3]; |
| } |
| return checksum; |
| } |
| |
| bool FixChecksums(const std::vector<Table>& tables, uint8_t* dst) { |
| const Table* head_table = FindTable(tables, TAG('h', 'e', 'a', 'd')); |
| if (head_table == NULL || |
| head_table->dst_length < kCheckSumAdjustmentOffset + 4) { |
| return OTS_FAILURE(); |
| } |
| size_t adjustment_offset = head_table->dst_offset + kCheckSumAdjustmentOffset; |
| if (adjustment_offset < head_table->dst_offset) { |
| return OTS_FAILURE(); |
| } |
| StoreU32(dst, adjustment_offset, 0); |
| size_t n_tables = tables.size(); |
| uint32_t file_checksum = 0; |
| for (size_t i = 0; i < n_tables; ++i) { |
| const Table* table = &tables.at(i); |
| size_t table_length = table->dst_length; |
| uint8_t* table_data = dst + table->dst_offset; |
| uint32_t checksum = ComputeChecksum(table_data, table_length); |
| StoreU32(dst, kSfntHeaderSize + i * kSfntEntrySize + 4, checksum); |
| file_checksum += checksum; // The addition is mod 2^32 |
| } |
| file_checksum += ComputeChecksum(dst, |
| kSfntHeaderSize + kSfntEntrySize * n_tables); |
| uint32_t checksum_adjustment = 0xb1b0afba - file_checksum; |
| StoreU32(dst, adjustment_offset, checksum_adjustment); |
| return true; |
| } |
| |
| bool Woff2Uncompress(uint8_t* dst_buf, size_t dst_size, |
| const uint8_t* src_buf, size_t src_size) { |
| size_t uncompressed_size = dst_size; |
| int ok = BrotliDecompressBuffer(src_size, src_buf, |
| &uncompressed_size, dst_buf); |
| if (!ok || uncompressed_size != dst_size) { |
| return OTS_FAILURE(); |
| } |
| return true; |
| } |
| |
| bool ReadTableDirectory(ots::OpenTypeFile* file, |
| ots::Buffer* buffer, std::vector<Table>* tables, |
| size_t num_tables) { |
| for (size_t i = 0; i < num_tables; ++i) { |
| Table* table = &tables->at(i); |
| uint8_t flag_byte; |
| if (!buffer->ReadU8(&flag_byte)) { |
| return OTS_FAILURE_MSG("Failed to read the flags of table directory entry %d", i); |
| } |
| uint32_t tag; |
| if ((flag_byte & 0x3f) == 0x3f) { |
| if (!buffer->ReadU32(&tag)) { |
| return OTS_FAILURE_MSG("Failed to read the tag of table directory entry %d", i); |
| } |
| } else { |
| tag = kKnownTags[flag_byte & 0x3f]; |
| } |
| // Bits 6 and 7 are reserved and must be 0. |
| if ((flag_byte & 0xc0) != 0) { |
| return OTS_FAILURE_MSG("Bits 6 and 7 are not 0 for table directory entry %d", i); |
| } |
| uint32_t flags = 0; |
| // Always transform the glyf and loca tables |
| if (tag == TAG('g', 'l', 'y', 'f') || |
| tag == TAG('l', 'o', 'c', 'a')) { |
| flags |= kWoff2FlagsTransform; |
| } |
| uint32_t dst_length; |
| if (!ReadBase128(buffer, &dst_length)) { |
| return OTS_FAILURE_MSG("Failed to read \"origLength\" for table %4.4s", (char*)&tag); |
| } |
| uint32_t transform_length = dst_length; |
| if ((flags & kWoff2FlagsTransform) != 0) { |
| if (!ReadBase128(buffer, &transform_length)) { |
| return OTS_FAILURE_MSG("Failed to read \"transformLength\" for table %4.4s", (char*)&tag); |
| } |
| } |
| // Disallow huge numbers (> 1GB) for sanity. |
| if (transform_length > 1024 * 1024 * 1024 || |
| dst_length > 1024 * 1024 * 1024) { |
| return OTS_FAILURE_MSG("\"origLength\" or \"transformLength\" > 1GB"); |
| } |
| table->tag = tag; |
| table->flags = flags; |
| table->transform_length = transform_length; |
| table->dst_length = dst_length; |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| namespace ots { |
| |
| size_t ComputeWOFF2FinalSize(const uint8_t* data, size_t length) { |
| ots::Buffer file(data, length); |
| uint32_t total_length; |
| |
| if (!file.Skip(16) || |
| !file.ReadU32(&total_length)) { |
| return 0; |
| } |
| return total_length; |
| } |
| |
| bool ConvertWOFF2ToTTF(ots::OpenTypeFile* file, |
| uint8_t* result, size_t result_length, |
| const uint8_t* data, size_t length) { |
| static const uint32_t kWoff2Signature = 0x774f4632; // "wOF2" |
| ots::Buffer buffer(data, length); |
| |
| uint32_t signature; |
| uint32_t flavor = 0; |
| if (!buffer.ReadU32(&signature) || signature != kWoff2Signature || |
| !buffer.ReadU32(&flavor)) { |
| return OTS_FAILURE_MSG("Failed to read \"signature\" or \"flavor\", or not WOFF2 signature"); |
| } |
| |
| if (!IsValidVersionTag(ntohl(flavor))) { |
| return OTS_FAILURE_MSG("Invalid \"flavor\""); |
| } |
| |
| uint32_t reported_length; |
| if (!buffer.ReadU32(&reported_length) || length != reported_length) { |
| return OTS_FAILURE_MSG("Failed to read \"length\" or it does not match the actual file size"); |
| } |
| uint16_t num_tables; |
| if (!buffer.ReadU16(&num_tables) || !num_tables) { |
| return OTS_FAILURE_MSG("Failed to read \"numTables\""); |
| } |
| // We don't care about these fields of the header: |
| // uint16_t reserved |
| // uint32_t total_sfnt_size |
| if (!buffer.Skip(6)) { |
| return OTS_FAILURE_MSG("Failed to read \"reserve\" or \"totalSfntSize\""); |
| } |
| uint32_t compressed_length; |
| if (!buffer.ReadU32(&compressed_length)) { |
| return OTS_FAILURE_MSG("Failed to read \"totalCompressedSize\""); |
| } |
| if (compressed_length > std::numeric_limits<uint32_t>::max()) { |
| return OTS_FAILURE(); |
| } |
| |
| // We don't care about these fields of the header: |
| // uint16_t major_version, minor_version |
| // uint32_t meta_offset, meta_length, meta_orig_length |
| // uint32_t priv_offset, priv_length |
| if (!buffer.Skip(24)) { |
| return OTS_FAILURE(); |
| } |
| std::vector<Table> tables(num_tables); |
| if (!ReadTableDirectory(file, &buffer, &tables, num_tables)) { |
| return OTS_FAILURE_MSG("Failed to read table directory"); |
| } |
| uint64_t compressed_offset = buffer.offset(); |
| if (compressed_offset > std::numeric_limits<uint32_t>::max()) { |
| return OTS_FAILURE(); |
| } |
| uint64_t dst_offset = kSfntHeaderSize + |
| kSfntEntrySize * static_cast<uint64_t>(num_tables); |
| for (uint16_t i = 0; i < num_tables; ++i) { |
| Table* table = &tables.at(i); |
| table->dst_offset = static_cast<uint32_t>(dst_offset); |
| dst_offset += table->dst_length; |
| if (dst_offset > std::numeric_limits<uint32_t>::max()) { |
| return OTS_FAILURE(); |
| } |
| dst_offset = ots::Round4(dst_offset); |
| } |
| if (ots::Round4(compressed_offset + compressed_length) > length || dst_offset > result_length) { |
| return OTS_FAILURE(); |
| } |
| |
| const uint32_t sfnt_header_and_table_directory_size = 12 + 16 * num_tables; |
| if (sfnt_header_and_table_directory_size > result_length) { |
| return OTS_FAILURE(); |
| } |
| |
| // Start building the font |
| size_t offset = 0; |
| offset = StoreU32(result, offset, flavor); |
| offset = StoreU16(result, offset, num_tables); |
| uint8_t max_pow2 = 0; |
| while (1u << (max_pow2 + 1) <= num_tables) { |
| max_pow2++; |
| } |
| const uint16_t output_search_range = (1u << max_pow2) << 4; |
| offset = StoreU16(result, offset, output_search_range); |
| offset = StoreU16(result, offset, max_pow2); |
| offset = StoreU16(result, offset, (num_tables << 4) - output_search_range); |
| for (uint16_t i = 0; i < num_tables; ++i) { |
| const Table* table = &tables.at(i); |
| offset = StoreU32(result, offset, table->tag); |
| offset = StoreU32(result, offset, 0); // checksum, to fill in later |
| offset = StoreU32(result, offset, table->dst_offset); |
| offset = StoreU32(result, offset, table->dst_length); |
| } |
| std::vector<uint8_t> uncompressed_buf; |
| const uint8_t* transform_buf = NULL; |
| uint64_t total_size = 0; |
| |
| for (uint16_t i = 0; i < num_tables; ++i) { |
| total_size += tables.at(i).transform_length; |
| if (total_size > std::numeric_limits<uint32_t>::max()) { |
| return OTS_FAILURE(); |
| } |
| } |
| // Enforce same 30M limit on uncompressed tables as OTS |
| if (total_size > 30 * 1024 * 1024) { |
| return OTS_FAILURE(); |
| } |
| const size_t total_size_size_t = static_cast<size_t>(total_size); |
| uncompressed_buf.resize(total_size_size_t); |
| const uint8_t* src_buf = data + compressed_offset; |
| if (!Woff2Uncompress(&uncompressed_buf[0], total_size_size_t, |
| src_buf, compressed_length)) { |
| return OTS_FAILURE(); |
| } |
| transform_buf = &uncompressed_buf[0]; |
| |
| for (uint16_t i = 0; i < num_tables; ++i) { |
| const Table* table = &tables.at(i); |
| uint32_t flags = table->flags; |
| size_t transform_length = table->transform_length; |
| |
| if ((flags & kWoff2FlagsTransform) == 0) { |
| if (transform_length != table->dst_length) { |
| return OTS_FAILURE(); |
| } |
| if (static_cast<uint64_t>(table->dst_offset) + transform_length > |
| result_length) { |
| return OTS_FAILURE(); |
| } |
| std::memcpy(result + table->dst_offset, transform_buf, |
| transform_length); |
| } else { |
| if (!ReconstructTransformed(tables, table->tag, |
| transform_buf, transform_length, result, result_length)) { |
| return OTS_FAILURE(); |
| } |
| } |
| |
| transform_buf += transform_length; |
| if (transform_buf > &uncompressed_buf[0] + uncompressed_buf.size()) { |
| return OTS_FAILURE(); |
| } |
| } |
| |
| return FixChecksums(tables, result); |
| } |
| |
| } // namespace ots |
| |
| #undef TABLE_NAME |