blob: 8a433922fdf0009f1bc4ed0a1a0caa146a798977 [file] [log] [blame]
James Robinson646469d2014-10-03 15:33:28 -07001// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Weak pointers are pointers to an object that do not affect its lifetime,
6// and which may be invalidated (i.e. reset to NULL) by the object, or its
7// owner, at any time, most commonly when the object is about to be deleted.
8
9// Weak pointers are useful when an object needs to be accessed safely by one
10// or more objects other than its owner, and those callers can cope with the
11// object vanishing and e.g. tasks posted to it being silently dropped.
12// Reference-counting such an object would complicate the ownership graph and
13// make it harder to reason about the object's lifetime.
14
15// EXAMPLE:
16//
17// class Controller {
18// public:
19// void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
20// void WorkComplete(const Result& result) { ... }
21// private:
22// // Member variables should appear before the WeakPtrFactory, to ensure
23// // that any WeakPtrs to Controller are invalidated before its members
24// // variable's destructors are executed, rendering them invalid.
25// WeakPtrFactory<Controller> weak_factory_;
26// };
27//
28// class Worker {
29// public:
30// static void StartNew(const WeakPtr<Controller>& controller) {
31// Worker* worker = new Worker(controller);
32// // Kick off asynchronous processing...
33// }
34// private:
35// Worker(const WeakPtr<Controller>& controller)
36// : controller_(controller) {}
37// void DidCompleteAsynchronousProcessing(const Result& result) {
38// if (controller_)
39// controller_->WorkComplete(result);
40// }
41// WeakPtr<Controller> controller_;
42// };
43//
44// With this implementation a caller may use SpawnWorker() to dispatch multiple
45// Workers and subsequently delete the Controller, without waiting for all
46// Workers to have completed.
47
48// ------------------------- IMPORTANT: Thread-safety -------------------------
49
50// Weak pointers may be passed safely between threads, but must always be
James Robinson675df572014-10-22 17:20:33 -070051// dereferenced and invalidated on the same SequencedTaskRunner otherwise
52// checking the pointer would be racey.
James Robinson646469d2014-10-03 15:33:28 -070053//
54// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
55// is dereferenced, the factory and its WeakPtrs become bound to the calling
James Robinson675df572014-10-22 17:20:33 -070056// thread or current SequencedWorkerPool token, and cannot be dereferenced or
57// invalidated on any other task runner. Bound WeakPtrs can still be handed
58// off to other task runners, e.g. to use to post tasks back to object on the
59// bound sequence.
James Robinson646469d2014-10-03 15:33:28 -070060//
James Robinson675df572014-10-22 17:20:33 -070061// Invalidating the factory's WeakPtrs un-binds it from the sequence, allowing
62// it to be passed for a different sequence to use or delete it.
James Robinson646469d2014-10-03 15:33:28 -070063
64#ifndef BASE_MEMORY_WEAK_PTR_H_
65#define BASE_MEMORY_WEAK_PTR_H_
66
67#include "base/basictypes.h"
68#include "base/base_export.h"
69#include "base/logging.h"
70#include "base/memory/ref_counted.h"
71#include "base/sequence_checker.h"
72#include "base/template_util.h"
73
74namespace base {
75
76template <typename T> class SupportsWeakPtr;
77template <typename T> class WeakPtr;
78
79namespace internal {
80// These classes are part of the WeakPtr implementation.
81// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
82
83class BASE_EXPORT WeakReference {
84 public:
James Robinson675df572014-10-22 17:20:33 -070085 // Although Flag is bound to a specific SequencedTaskRunner, it may be
86 // deleted from another via base::WeakPtr::~WeakPtr().
James Robinson646469d2014-10-03 15:33:28 -070087 class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
88 public:
89 Flag();
90
91 void Invalidate();
92 bool IsValid() const;
93
94 private:
95 friend class base::RefCountedThreadSafe<Flag>;
96
97 ~Flag();
98
99 SequenceChecker sequence_checker_;
100 bool is_valid_;
101 };
102
103 WeakReference();
104 explicit WeakReference(const Flag* flag);
105 ~WeakReference();
106
107 bool is_valid() const;
108
109 private:
110 scoped_refptr<const Flag> flag_;
111};
112
113class BASE_EXPORT WeakReferenceOwner {
114 public:
115 WeakReferenceOwner();
116 ~WeakReferenceOwner();
117
118 WeakReference GetRef() const;
119
120 bool HasRefs() const {
121 return flag_.get() && !flag_->HasOneRef();
122 }
123
124 void Invalidate();
125
126 private:
127 mutable scoped_refptr<WeakReference::Flag> flag_;
128};
129
130// This class simplifies the implementation of WeakPtr's type conversion
131// constructor by avoiding the need for a public accessor for ref_. A
132// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
133// base class gives us a way to access ref_ in a protected fashion.
134class BASE_EXPORT WeakPtrBase {
135 public:
136 WeakPtrBase();
137 ~WeakPtrBase();
138
139 protected:
140 explicit WeakPtrBase(const WeakReference& ref);
141
142 WeakReference ref_;
143};
144
145// This class provides a common implementation of common functions that would
146// otherwise get instantiated separately for each distinct instantiation of
147// SupportsWeakPtr<>.
148class SupportsWeakPtrBase {
149 public:
150 // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
151 // conversion will only compile if there is exists a Base which inherits
152 // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
153 // function that makes calling this easier.
154 template<typename Derived>
155 static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
156 typedef
157 is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
158 COMPILE_ASSERT(convertible::value,
159 AsWeakPtr_argument_inherits_from_SupportsWeakPtr);
160 return AsWeakPtrImpl<Derived>(t, *t);
161 }
162
163 private:
164 // This template function uses type inference to find a Base of Derived
165 // which is an instance of SupportsWeakPtr<Base>. We can then safely
166 // static_cast the Base* to a Derived*.
167 template <typename Derived, typename Base>
168 static WeakPtr<Derived> AsWeakPtrImpl(
169 Derived* t, const SupportsWeakPtr<Base>&) {
170 WeakPtr<Base> ptr = t->Base::AsWeakPtr();
171 return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
172 }
173};
174
175} // namespace internal
176
177template <typename T> class WeakPtrFactory;
178
179// The WeakPtr class holds a weak reference to |T*|.
180//
181// This class is designed to be used like a normal pointer. You should always
182// null-test an object of this class before using it or invoking a method that
183// may result in the underlying object being destroyed.
184//
185// EXAMPLE:
186//
187// class Foo { ... };
188// WeakPtr<Foo> foo;
189// if (foo)
190// foo->method();
191//
192template <typename T>
193class WeakPtr : public internal::WeakPtrBase {
194 public:
195 WeakPtr() : ptr_(NULL) {
196 }
197
198 // Allow conversion from U to T provided U "is a" T. Note that this
199 // is separate from the (implicit) copy constructor.
200 template <typename U>
201 WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
202 }
203
204 T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
205
206 T& operator*() const {
207 DCHECK(get() != NULL);
208 return *get();
209 }
210 T* operator->() const {
211 DCHECK(get() != NULL);
212 return get();
213 }
214
215 // Allow WeakPtr<element_type> to be used in boolean expressions, but not
216 // implicitly convertible to a real bool (which is dangerous).
217 //
218 // Note that this trick is only safe when the == and != operators
219 // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
220 // will compile but do the wrong thing (i.e., convert to Testable
221 // and then do the comparison).
222 private:
223 typedef T* WeakPtr::*Testable;
224
225 public:
226 operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
227
228 void reset() {
229 ref_ = internal::WeakReference();
230 ptr_ = NULL;
231 }
232
233 private:
234 // Explicitly declare comparison operators as required by the bool
235 // trick, but keep them private.
236 template <class U> bool operator==(WeakPtr<U> const&) const;
237 template <class U> bool operator!=(WeakPtr<U> const&) const;
238
239 friend class internal::SupportsWeakPtrBase;
240 template <typename U> friend class WeakPtr;
241 friend class SupportsWeakPtr<T>;
242 friend class WeakPtrFactory<T>;
243
244 WeakPtr(const internal::WeakReference& ref, T* ptr)
245 : WeakPtrBase(ref),
246 ptr_(ptr) {
247 }
248
249 // This pointer is only valid when ref_.is_valid() is true. Otherwise, its
250 // value is undefined (as opposed to NULL).
251 T* ptr_;
252};
253
254// A class may be composed of a WeakPtrFactory and thereby
255// control how it exposes weak pointers to itself. This is helpful if you only
256// need weak pointers within the implementation of a class. This class is also
257// useful when working with primitive types. For example, you could have a
258// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
259template <class T>
260class WeakPtrFactory {
261 public:
262 explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
263 }
264
265 ~WeakPtrFactory() {
266 ptr_ = NULL;
267 }
268
269 WeakPtr<T> GetWeakPtr() {
270 DCHECK(ptr_);
271 return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
272 }
273
274 // Call this method to invalidate all existing weak pointers.
275 void InvalidateWeakPtrs() {
276 DCHECK(ptr_);
277 weak_reference_owner_.Invalidate();
278 }
279
280 // Call this method to determine if any weak pointers exist.
281 bool HasWeakPtrs() const {
282 DCHECK(ptr_);
283 return weak_reference_owner_.HasRefs();
284 }
285
286 private:
287 internal::WeakReferenceOwner weak_reference_owner_;
288 T* ptr_;
289 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
290};
291
292// A class may extend from SupportsWeakPtr to let others take weak pointers to
293// it. This avoids the class itself implementing boilerplate to dispense weak
294// pointers. However, since SupportsWeakPtr's destructor won't invalidate
295// weak pointers to the class until after the derived class' members have been
296// destroyed, its use can lead to subtle use-after-destroy issues.
297template <class T>
298class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
299 public:
300 SupportsWeakPtr() {}
301
302 WeakPtr<T> AsWeakPtr() {
303 return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
304 }
305
306 protected:
307 ~SupportsWeakPtr() {}
308
309 private:
310 internal::WeakReferenceOwner weak_reference_owner_;
311 DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
312};
313
314// Helper function that uses type deduction to safely return a WeakPtr<Derived>
315// when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
316// extends a Base that extends SupportsWeakPtr<Base>.
317//
318// EXAMPLE:
319// class Base : public base::SupportsWeakPtr<Producer> {};
320// class Derived : public Base {};
321//
322// Derived derived;
323// base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
324//
325// Note that the following doesn't work (invalid type conversion) since
326// Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
327// and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
328// the caller.
329//
330// base::WeakPtr<Derived> ptr = derived.AsWeakPtr(); // Fails.
331
332template <typename Derived>
333WeakPtr<Derived> AsWeakPtr(Derived* t) {
334 return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
335}
336
337} // namespace base
338
339#endif // BASE_MEMORY_WEAK_PTR_H_