Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | /* sqrt(x) |
| 13 | * Return correctly rounded sqrt. |
| 14 | * ------------------------------------------ |
| 15 | * | Use the hardware sqrt if you have one | |
| 16 | * ------------------------------------------ |
| 17 | * Method: |
| 18 | * Bit by bit method using integer arithmetic. (Slow, but portable) |
| 19 | * 1. Normalization |
| 20 | * Scale x to y in [1,4) with even powers of 2: |
| 21 | * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then |
| 22 | * sqrt(x) = 2^k * sqrt(y) |
| 23 | * 2. Bit by bit computation |
| 24 | * Let q = sqrt(y) truncated to i bit after binary point (q = 1), |
| 25 | * i 0 |
| 26 | * i+1 2 |
| 27 | * s = 2*q , and y = 2 * ( y - q ). (1) |
| 28 | * i i i i |
| 29 | * |
| 30 | * To compute q from q , one checks whether |
| 31 | * i+1 i |
| 32 | * |
| 33 | * -(i+1) 2 |
| 34 | * (q + 2 ) <= y. (2) |
| 35 | * i |
| 36 | * -(i+1) |
| 37 | * If (2) is false, then q = q ; otherwise q = q + 2 . |
| 38 | * i+1 i i+1 i |
| 39 | * |
| 40 | * With some algebric manipulation, it is not difficult to see |
| 41 | * that (2) is equivalent to |
| 42 | * -(i+1) |
| 43 | * s + 2 <= y (3) |
| 44 | * i i |
| 45 | * |
| 46 | * The advantage of (3) is that s and y can be computed by |
| 47 | * i i |
| 48 | * the following recurrence formula: |
| 49 | * if (3) is false |
| 50 | * |
| 51 | * s = s , y = y ; (4) |
| 52 | * i+1 i i+1 i |
| 53 | * |
| 54 | * otherwise, |
| 55 | * -i -(i+1) |
| 56 | * s = s + 2 , y = y - s - 2 (5) |
| 57 | * i+1 i i+1 i i |
| 58 | * |
| 59 | * One may easily use induction to prove (4) and (5). |
| 60 | * Note. Since the left hand side of (3) contain only i+2 bits, |
| 61 | * it does not necessary to do a full (53-bit) comparison |
| 62 | * in (3). |
| 63 | * 3. Final rounding |
| 64 | * After generating the 53 bits result, we compute one more bit. |
| 65 | * Together with the remainder, we can decide whether the |
| 66 | * result is exact, bigger than 1/2ulp, or less than 1/2ulp |
| 67 | * (it will never equal to 1/2ulp). |
| 68 | * The rounding mode can be detected by checking whether |
| 69 | * huge + tiny is equal to huge, and whether huge - tiny is |
| 70 | * equal to huge for some floating point number "huge" and "tiny". |
| 71 | * |
| 72 | * Special cases: |
| 73 | * sqrt(+-0) = +-0 ... exact |
| 74 | * sqrt(inf) = inf |
| 75 | * sqrt(-ve) = NaN ... with invalid signal |
| 76 | * sqrt(NaN) = NaN ... with invalid signal for signaling NaN |
| 77 | */ |
| 78 | |
| 79 | #include "libm.h" |
| 80 | |
| 81 | static const double tiny = 1.0e-300; |
| 82 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 83 | double sqrt(double x) { |
| 84 | double z; |
| 85 | int32_t sign = (int)0x80000000; |
| 86 | int32_t ix0, s0, q, m, t, i; |
| 87 | uint32_t r, t1, s1, ix1, q1; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 88 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 89 | EXTRACT_WORDS(ix0, ix1, x); |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 90 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 91 | /* take care of Inf and NaN */ |
| 92 | if ((ix0 & 0x7ff00000) == 0x7ff00000) { |
| 93 | return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ |
| 94 | } |
| 95 | /* take care of zero */ |
| 96 | if (ix0 <= 0) { |
| 97 | if (((ix0 & ~sign) | ix1) == 0) |
| 98 | return x; /* sqrt(+-0) = +-0 */ |
| 99 | if (ix0 < 0) |
| 100 | return (x - x) / (x - x); /* sqrt(-ve) = sNaN */ |
| 101 | } |
| 102 | /* normalize x */ |
| 103 | m = ix0 >> 20; |
| 104 | if (m == 0) { /* subnormal x */ |
| 105 | while (ix0 == 0) { |
| 106 | m -= 21; |
| 107 | ix0 |= (ix1 >> 11); |
| 108 | ix1 <<= 21; |
| 109 | } |
| 110 | for (i = 0; (ix0 & 0x00100000) == 0; i++) |
| 111 | ix0 <<= 1; |
| 112 | m -= i - 1; |
| 113 | ix0 |= ix1 >> (32 - i); |
| 114 | ix1 <<= i; |
| 115 | } |
| 116 | m -= 1023; /* unbias exponent */ |
| 117 | ix0 = (ix0 & 0x000fffff) | 0x00100000; |
| 118 | if (m & 1) { /* odd m, double x to make it even */ |
| 119 | ix0 += ix0 + ((ix1 & sign) >> 31); |
| 120 | ix1 += ix1; |
| 121 | } |
| 122 | m >>= 1; /* m = [m/2] */ |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 123 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 124 | /* generate sqrt(x) bit by bit */ |
| 125 | ix0 += ix0 + ((ix1 & sign) >> 31); |
| 126 | ix1 += ix1; |
| 127 | q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ |
| 128 | r = 0x00200000; /* r = moving bit from right to left */ |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 129 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 130 | while (r != 0) { |
| 131 | t = s0 + r; |
| 132 | if (t <= ix0) { |
| 133 | s0 = t + r; |
| 134 | ix0 -= t; |
| 135 | q += r; |
| 136 | } |
| 137 | ix0 += ix0 + ((ix1 & sign) >> 31); |
| 138 | ix1 += ix1; |
| 139 | r >>= 1; |
| 140 | } |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 141 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 142 | r = sign; |
| 143 | while (r != 0) { |
| 144 | t1 = s1 + r; |
| 145 | t = s0; |
| 146 | if (t < ix0 || (t == ix0 && t1 <= ix1)) { |
| 147 | s1 = t1 + r; |
| 148 | if ((t1 & sign) == sign && (s1 & sign) == 0) |
| 149 | s0++; |
| 150 | ix0 -= t; |
| 151 | if (ix1 < t1) |
| 152 | ix0--; |
| 153 | ix1 -= t1; |
| 154 | q1 += r; |
| 155 | } |
| 156 | ix0 += ix0 + ((ix1 & sign) >> 31); |
| 157 | ix1 += ix1; |
| 158 | r >>= 1; |
| 159 | } |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 160 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 161 | /* use floating add to find out rounding direction */ |
| 162 | if ((ix0 | ix1) != 0) { |
| 163 | z = 1.0 - tiny; /* raise inexact flag */ |
| 164 | if (z >= 1.0) { |
| 165 | z = 1.0 + tiny; |
| 166 | if (q1 == (uint32_t)0xffffffff) { |
| 167 | q1 = 0; |
| 168 | q++; |
| 169 | } else if (z > 1.0) { |
| 170 | if (q1 == (uint32_t)0xfffffffe) |
| 171 | q++; |
| 172 | q1 += 2; |
| 173 | } else |
| 174 | q1 += q1 & 1; |
| 175 | } |
| 176 | } |
| 177 | ix0 = (q >> 1) + 0x3fe00000; |
| 178 | ix1 = q1 >> 1; |
| 179 | if (q & 1) |
| 180 | ix1 |= sign; |
| 181 | ix0 += m << 20; |
| 182 | INSERT_WORDS(z, ix0, ix1); |
| 183 | return z; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 184 | } |