James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 1 | // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | // MSVC++ requires this to be set before any other includes to get M_PI. |
| 6 | #define _USE_MATH_DEFINES |
| 7 | |
| 8 | #include "ui/gfx/transform.h" |
| 9 | |
| 10 | #include <cmath> |
| 11 | |
| 12 | #include "base/logging.h" |
| 13 | #include "base/strings/stringprintf.h" |
| 14 | #include "ui/gfx/box_f.h" |
| 15 | #include "ui/gfx/point.h" |
| 16 | #include "ui/gfx/point3_f.h" |
| 17 | #include "ui/gfx/rect.h" |
| 18 | #include "ui/gfx/safe_integer_conversions.h" |
| 19 | #include "ui/gfx/skia_util.h" |
| 20 | #include "ui/gfx/transform_util.h" |
| 21 | #include "ui/gfx/vector3d_f.h" |
| 22 | |
| 23 | namespace gfx { |
| 24 | |
| 25 | namespace { |
| 26 | |
| 27 | // Taken from SkMatrix44. |
| 28 | const SkMScalar kEpsilon = 1e-8f; |
| 29 | |
| 30 | SkMScalar TanDegrees(double degrees) { |
| 31 | double radians = degrees * M_PI / 180; |
| 32 | return SkDoubleToMScalar(std::tan(radians)); |
| 33 | } |
| 34 | |
| 35 | inline bool ApproximatelyZero(SkMScalar x, SkMScalar tolerance) { |
| 36 | return std::abs(x) <= tolerance; |
| 37 | } |
| 38 | |
| 39 | inline bool ApproximatelyOne(SkMScalar x, SkMScalar tolerance) { |
| 40 | return std::abs(x - SkDoubleToMScalar(1.0)) <= tolerance; |
| 41 | } |
| 42 | |
Etienne Membrives | 386015a | 2015-02-19 17:27:12 +0100 | [diff] [blame] | 43 | static float Round(float f) { |
| 44 | if (f == 0.f) |
| 45 | return f; |
| 46 | return (f > 0.f) ? std::floor(f + 0.5f) : std::ceil(f - 0.5f); |
| 47 | } |
| 48 | |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 49 | } // namespace |
| 50 | |
| 51 | Transform::Transform(SkMScalar col1row1, |
| 52 | SkMScalar col2row1, |
| 53 | SkMScalar col3row1, |
| 54 | SkMScalar col4row1, |
| 55 | SkMScalar col1row2, |
| 56 | SkMScalar col2row2, |
| 57 | SkMScalar col3row2, |
| 58 | SkMScalar col4row2, |
| 59 | SkMScalar col1row3, |
| 60 | SkMScalar col2row3, |
| 61 | SkMScalar col3row3, |
| 62 | SkMScalar col4row3, |
| 63 | SkMScalar col1row4, |
| 64 | SkMScalar col2row4, |
| 65 | SkMScalar col3row4, |
| 66 | SkMScalar col4row4) |
| 67 | : matrix_(SkMatrix44::kUninitialized_Constructor) { |
| 68 | matrix_.set(0, 0, col1row1); |
| 69 | matrix_.set(1, 0, col1row2); |
| 70 | matrix_.set(2, 0, col1row3); |
| 71 | matrix_.set(3, 0, col1row4); |
| 72 | |
| 73 | matrix_.set(0, 1, col2row1); |
| 74 | matrix_.set(1, 1, col2row2); |
| 75 | matrix_.set(2, 1, col2row3); |
| 76 | matrix_.set(3, 1, col2row4); |
| 77 | |
| 78 | matrix_.set(0, 2, col3row1); |
| 79 | matrix_.set(1, 2, col3row2); |
| 80 | matrix_.set(2, 2, col3row3); |
| 81 | matrix_.set(3, 2, col3row4); |
| 82 | |
| 83 | matrix_.set(0, 3, col4row1); |
| 84 | matrix_.set(1, 3, col4row2); |
| 85 | matrix_.set(2, 3, col4row3); |
| 86 | matrix_.set(3, 3, col4row4); |
| 87 | } |
| 88 | |
| 89 | Transform::Transform(SkMScalar col1row1, |
| 90 | SkMScalar col2row1, |
| 91 | SkMScalar col1row2, |
| 92 | SkMScalar col2row2, |
| 93 | SkMScalar x_translation, |
| 94 | SkMScalar y_translation) |
| 95 | : matrix_(SkMatrix44::kIdentity_Constructor) { |
| 96 | matrix_.set(0, 0, col1row1); |
| 97 | matrix_.set(1, 0, col1row2); |
| 98 | matrix_.set(0, 1, col2row1); |
| 99 | matrix_.set(1, 1, col2row2); |
| 100 | matrix_.set(0, 3, x_translation); |
| 101 | matrix_.set(1, 3, y_translation); |
| 102 | } |
| 103 | |
| 104 | void Transform::RotateAboutXAxis(double degrees) { |
| 105 | double radians = degrees * M_PI / 180; |
| 106 | SkMScalar cosTheta = SkDoubleToMScalar(std::cos(radians)); |
| 107 | SkMScalar sinTheta = SkDoubleToMScalar(std::sin(radians)); |
| 108 | if (matrix_.isIdentity()) { |
| 109 | matrix_.set3x3(1, 0, 0, |
| 110 | 0, cosTheta, sinTheta, |
| 111 | 0, -sinTheta, cosTheta); |
| 112 | } else { |
| 113 | SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor); |
| 114 | rot.set3x3(1, 0, 0, |
| 115 | 0, cosTheta, sinTheta, |
| 116 | 0, -sinTheta, cosTheta); |
| 117 | matrix_.preConcat(rot); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | void Transform::RotateAboutYAxis(double degrees) { |
| 122 | double radians = degrees * M_PI / 180; |
| 123 | SkMScalar cosTheta = SkDoubleToMScalar(std::cos(radians)); |
| 124 | SkMScalar sinTheta = SkDoubleToMScalar(std::sin(radians)); |
| 125 | if (matrix_.isIdentity()) { |
| 126 | // Note carefully the placement of the -sinTheta for rotation about |
| 127 | // y-axis is different than rotation about x-axis or z-axis. |
| 128 | matrix_.set3x3(cosTheta, 0, -sinTheta, |
| 129 | 0, 1, 0, |
| 130 | sinTheta, 0, cosTheta); |
| 131 | } else { |
| 132 | SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor); |
| 133 | rot.set3x3(cosTheta, 0, -sinTheta, |
| 134 | 0, 1, 0, |
| 135 | sinTheta, 0, cosTheta); |
| 136 | matrix_.preConcat(rot); |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | void Transform::RotateAboutZAxis(double degrees) { |
| 141 | double radians = degrees * M_PI / 180; |
| 142 | SkMScalar cosTheta = SkDoubleToMScalar(std::cos(radians)); |
| 143 | SkMScalar sinTheta = SkDoubleToMScalar(std::sin(radians)); |
| 144 | if (matrix_.isIdentity()) { |
| 145 | matrix_.set3x3(cosTheta, sinTheta, 0, |
| 146 | -sinTheta, cosTheta, 0, |
| 147 | 0, 0, 1); |
| 148 | } else { |
| 149 | SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor); |
| 150 | rot.set3x3(cosTheta, sinTheta, 0, |
| 151 | -sinTheta, cosTheta, 0, |
| 152 | 0, 0, 1); |
| 153 | matrix_.preConcat(rot); |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | void Transform::RotateAbout(const Vector3dF& axis, double degrees) { |
| 158 | if (matrix_.isIdentity()) { |
| 159 | matrix_.setRotateDegreesAbout(SkFloatToMScalar(axis.x()), |
| 160 | SkFloatToMScalar(axis.y()), |
| 161 | SkFloatToMScalar(axis.z()), |
| 162 | degrees); |
| 163 | } else { |
| 164 | SkMatrix44 rot(SkMatrix44::kUninitialized_Constructor); |
| 165 | rot.setRotateDegreesAbout(SkFloatToMScalar(axis.x()), |
| 166 | SkFloatToMScalar(axis.y()), |
| 167 | SkFloatToMScalar(axis.z()), |
| 168 | degrees); |
| 169 | matrix_.preConcat(rot); |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | void Transform::Scale(SkMScalar x, SkMScalar y) { matrix_.preScale(x, y, 1); } |
| 174 | |
| 175 | void Transform::Scale3d(SkMScalar x, SkMScalar y, SkMScalar z) { |
| 176 | matrix_.preScale(x, y, z); |
| 177 | } |
| 178 | |
| 179 | void Transform::Translate(SkMScalar x, SkMScalar y) { |
| 180 | matrix_.preTranslate(x, y, 0); |
| 181 | } |
| 182 | |
| 183 | void Transform::Translate3d(SkMScalar x, SkMScalar y, SkMScalar z) { |
| 184 | matrix_.preTranslate(x, y, z); |
| 185 | } |
| 186 | |
| 187 | void Transform::SkewX(double angle_x) { |
| 188 | if (matrix_.isIdentity()) |
| 189 | matrix_.set(0, 1, TanDegrees(angle_x)); |
| 190 | else { |
| 191 | SkMatrix44 skew(SkMatrix44::kIdentity_Constructor); |
| 192 | skew.set(0, 1, TanDegrees(angle_x)); |
| 193 | matrix_.preConcat(skew); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | void Transform::SkewY(double angle_y) { |
| 198 | if (matrix_.isIdentity()) |
| 199 | matrix_.set(1, 0, TanDegrees(angle_y)); |
| 200 | else { |
| 201 | SkMatrix44 skew(SkMatrix44::kIdentity_Constructor); |
| 202 | skew.set(1, 0, TanDegrees(angle_y)); |
| 203 | matrix_.preConcat(skew); |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | void Transform::ApplyPerspectiveDepth(SkMScalar depth) { |
| 208 | if (depth == 0) |
| 209 | return; |
| 210 | if (matrix_.isIdentity()) |
| 211 | matrix_.set(3, 2, -1.0 / depth); |
| 212 | else { |
| 213 | SkMatrix44 m(SkMatrix44::kIdentity_Constructor); |
| 214 | m.set(3, 2, -1.0 / depth); |
| 215 | matrix_.preConcat(m); |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | void Transform::PreconcatTransform(const Transform& transform) { |
| 220 | matrix_.preConcat(transform.matrix_); |
| 221 | } |
| 222 | |
| 223 | void Transform::ConcatTransform(const Transform& transform) { |
| 224 | matrix_.postConcat(transform.matrix_); |
| 225 | } |
| 226 | |
| 227 | bool Transform::IsApproximatelyIdentityOrTranslation( |
| 228 | SkMScalar tolerance) const { |
| 229 | DCHECK_GE(tolerance, 0); |
| 230 | return |
| 231 | ApproximatelyOne(matrix_.get(0, 0), tolerance) && |
| 232 | ApproximatelyZero(matrix_.get(1, 0), tolerance) && |
| 233 | ApproximatelyZero(matrix_.get(2, 0), tolerance) && |
| 234 | matrix_.get(3, 0) == 0 && |
| 235 | ApproximatelyZero(matrix_.get(0, 1), tolerance) && |
| 236 | ApproximatelyOne(matrix_.get(1, 1), tolerance) && |
| 237 | ApproximatelyZero(matrix_.get(2, 1), tolerance) && |
| 238 | matrix_.get(3, 1) == 0 && |
| 239 | ApproximatelyZero(matrix_.get(0, 2), tolerance) && |
| 240 | ApproximatelyZero(matrix_.get(1, 2), tolerance) && |
| 241 | ApproximatelyOne(matrix_.get(2, 2), tolerance) && |
| 242 | matrix_.get(3, 2) == 0 && |
| 243 | matrix_.get(3, 3) == 1; |
| 244 | } |
| 245 | |
| 246 | bool Transform::IsIdentityOrIntegerTranslation() const { |
| 247 | if (!IsIdentityOrTranslation()) |
| 248 | return false; |
| 249 | |
| 250 | bool no_fractional_translation = |
| 251 | static_cast<int>(matrix_.get(0, 3)) == matrix_.get(0, 3) && |
| 252 | static_cast<int>(matrix_.get(1, 3)) == matrix_.get(1, 3) && |
| 253 | static_cast<int>(matrix_.get(2, 3)) == matrix_.get(2, 3); |
| 254 | |
| 255 | return no_fractional_translation; |
| 256 | } |
| 257 | |
| 258 | bool Transform::IsBackFaceVisible() const { |
| 259 | // Compute whether a layer with a forward-facing normal of (0, 0, 1, 0) |
| 260 | // would have its back face visible after applying the transform. |
| 261 | if (matrix_.isIdentity()) |
| 262 | return false; |
| 263 | |
| 264 | // This is done by transforming the normal and seeing if the resulting z |
| 265 | // value is positive or negative. However, note that transforming a normal |
| 266 | // actually requires using the inverse-transpose of the original transform. |
| 267 | // |
| 268 | // We can avoid inverting and transposing the matrix since we know we want |
| 269 | // to transform only the specific normal vector (0, 0, 1, 0). In this case, |
| 270 | // we only need the 3rd row, 3rd column of the inverse-transpose. We can |
| 271 | // calculate only the 3rd row 3rd column element of the inverse, skipping |
| 272 | // everything else. |
| 273 | // |
| 274 | // For more information, refer to: |
| 275 | // http://en.wikipedia.org/wiki/Invertible_matrix#Analytic_solution |
| 276 | // |
| 277 | |
| 278 | double determinant = matrix_.determinant(); |
| 279 | |
| 280 | // If matrix was not invertible, then just assume back face is not visible. |
| 281 | if (std::abs(determinant) <= kEpsilon) |
| 282 | return false; |
| 283 | |
| 284 | // Compute the cofactor of the 3rd row, 3rd column. |
| 285 | double cofactor_part_1 = |
| 286 | matrix_.get(0, 0) * matrix_.get(1, 1) * matrix_.get(3, 3); |
| 287 | |
| 288 | double cofactor_part_2 = |
| 289 | matrix_.get(0, 1) * matrix_.get(1, 3) * matrix_.get(3, 0); |
| 290 | |
| 291 | double cofactor_part_3 = |
| 292 | matrix_.get(0, 3) * matrix_.get(1, 0) * matrix_.get(3, 1); |
| 293 | |
| 294 | double cofactor_part_4 = |
| 295 | matrix_.get(0, 0) * matrix_.get(1, 3) * matrix_.get(3, 1); |
| 296 | |
| 297 | double cofactor_part_5 = |
| 298 | matrix_.get(0, 1) * matrix_.get(1, 0) * matrix_.get(3, 3); |
| 299 | |
| 300 | double cofactor_part_6 = |
| 301 | matrix_.get(0, 3) * matrix_.get(1, 1) * matrix_.get(3, 0); |
| 302 | |
| 303 | double cofactor33 = |
| 304 | cofactor_part_1 + |
| 305 | cofactor_part_2 + |
| 306 | cofactor_part_3 - |
| 307 | cofactor_part_4 - |
| 308 | cofactor_part_5 - |
| 309 | cofactor_part_6; |
| 310 | |
| 311 | // Technically the transformed z component is cofactor33 / determinant. But |
| 312 | // we can avoid the costly division because we only care about the resulting |
| 313 | // +/- sign; we can check this equivalently by multiplication. |
| 314 | return cofactor33 * determinant < 0; |
| 315 | } |
| 316 | |
| 317 | bool Transform::GetInverse(Transform* transform) const { |
| 318 | if (!matrix_.invert(&transform->matrix_)) { |
| 319 | // Initialize the return value to identity if this matrix turned |
| 320 | // out to be un-invertible. |
| 321 | transform->MakeIdentity(); |
| 322 | return false; |
| 323 | } |
| 324 | |
| 325 | return true; |
| 326 | } |
| 327 | |
| 328 | bool Transform::Preserves2dAxisAlignment() const { |
| 329 | // Check whether an axis aligned 2-dimensional rect would remain axis-aligned |
| 330 | // after being transformed by this matrix (and implicitly projected by |
| 331 | // dropping any non-zero z-values). |
| 332 | // |
| 333 | // The 4th column can be ignored because translations don't affect axis |
| 334 | // alignment. The 3rd column can be ignored because we are assuming 2d |
| 335 | // inputs, where z-values will be zero. The 3rd row can also be ignored |
| 336 | // because we are assuming 2d outputs, and any resulting z-value is dropped |
| 337 | // anyway. For the inner 2x2 portion, the only effects that keep a rect axis |
| 338 | // aligned are (1) swapping axes and (2) scaling axes. This can be checked by |
| 339 | // verifying only 1 element of every column and row is non-zero. Degenerate |
| 340 | // cases that project the x or y dimension to zero are considered to preserve |
| 341 | // axis alignment. |
| 342 | // |
| 343 | // If the matrix does have perspective component that is affected by x or y |
| 344 | // values: The current implementation conservatively assumes that axis |
| 345 | // alignment is not preserved. |
| 346 | |
| 347 | bool has_x_or_y_perspective = |
| 348 | matrix_.get(3, 0) != 0 || matrix_.get(3, 1) != 0; |
| 349 | |
| 350 | int num_non_zero_in_row_0 = 0; |
| 351 | int num_non_zero_in_row_1 = 0; |
| 352 | int num_non_zero_in_col_0 = 0; |
| 353 | int num_non_zero_in_col_1 = 0; |
| 354 | |
| 355 | if (std::abs(matrix_.get(0, 0)) > kEpsilon) { |
| 356 | num_non_zero_in_row_0++; |
| 357 | num_non_zero_in_col_0++; |
| 358 | } |
| 359 | |
| 360 | if (std::abs(matrix_.get(0, 1)) > kEpsilon) { |
| 361 | num_non_zero_in_row_0++; |
| 362 | num_non_zero_in_col_1++; |
| 363 | } |
| 364 | |
| 365 | if (std::abs(matrix_.get(1, 0)) > kEpsilon) { |
| 366 | num_non_zero_in_row_1++; |
| 367 | num_non_zero_in_col_0++; |
| 368 | } |
| 369 | |
| 370 | if (std::abs(matrix_.get(1, 1)) > kEpsilon) { |
| 371 | num_non_zero_in_row_1++; |
| 372 | num_non_zero_in_col_1++; |
| 373 | } |
| 374 | |
| 375 | return |
| 376 | num_non_zero_in_row_0 <= 1 && |
| 377 | num_non_zero_in_row_1 <= 1 && |
| 378 | num_non_zero_in_col_0 <= 1 && |
| 379 | num_non_zero_in_col_1 <= 1 && |
| 380 | !has_x_or_y_perspective; |
| 381 | } |
| 382 | |
| 383 | void Transform::Transpose() { |
| 384 | matrix_.transpose(); |
| 385 | } |
| 386 | |
| 387 | void Transform::FlattenTo2d() { |
| 388 | matrix_.set(2, 0, 0.0); |
| 389 | matrix_.set(2, 1, 0.0); |
| 390 | matrix_.set(0, 2, 0.0); |
| 391 | matrix_.set(1, 2, 0.0); |
| 392 | matrix_.set(2, 2, 1.0); |
| 393 | matrix_.set(3, 2, 0.0); |
| 394 | matrix_.set(2, 3, 0.0); |
| 395 | } |
| 396 | |
Dave Moore | 0ae79f4 | 2015-03-17 12:56:46 -0700 | [diff] [blame] | 397 | bool Transform::IsFlat() const { |
| 398 | return matrix_.get(2, 0) == 0.0 && matrix_.get(2, 1) == 0.0 && |
| 399 | matrix_.get(0, 2) == 0.0 && matrix_.get(1, 2) == 0.0 && |
| 400 | matrix_.get(2, 2) == 1.0 && matrix_.get(3, 2) == 0.0 && |
| 401 | matrix_.get(2, 3) == 0.0; |
| 402 | } |
| 403 | |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 404 | Vector2dF Transform::To2dTranslation() const { |
| 405 | return gfx::Vector2dF(SkMScalarToFloat(matrix_.get(0, 3)), |
| 406 | SkMScalarToFloat(matrix_.get(1, 3))); |
| 407 | } |
| 408 | |
| 409 | void Transform::TransformPoint(Point* point) const { |
| 410 | DCHECK(point); |
| 411 | TransformPointInternal(matrix_, point); |
| 412 | } |
| 413 | |
| 414 | void Transform::TransformPoint(Point3F* point) const { |
| 415 | DCHECK(point); |
| 416 | TransformPointInternal(matrix_, point); |
| 417 | } |
| 418 | |
| 419 | bool Transform::TransformPointReverse(Point* point) const { |
| 420 | DCHECK(point); |
| 421 | |
| 422 | // TODO(sad): Try to avoid trying to invert the matrix. |
| 423 | SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor); |
| 424 | if (!matrix_.invert(&inverse)) |
| 425 | return false; |
| 426 | |
| 427 | TransformPointInternal(inverse, point); |
| 428 | return true; |
| 429 | } |
| 430 | |
| 431 | bool Transform::TransformPointReverse(Point3F* point) const { |
| 432 | DCHECK(point); |
| 433 | |
| 434 | // TODO(sad): Try to avoid trying to invert the matrix. |
| 435 | SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor); |
| 436 | if (!matrix_.invert(&inverse)) |
| 437 | return false; |
| 438 | |
| 439 | TransformPointInternal(inverse, point); |
| 440 | return true; |
| 441 | } |
| 442 | |
| 443 | void Transform::TransformRect(RectF* rect) const { |
| 444 | if (matrix_.isIdentity()) |
| 445 | return; |
| 446 | |
| 447 | SkRect src = RectFToSkRect(*rect); |
| 448 | const SkMatrix& matrix = matrix_; |
| 449 | matrix.mapRect(&src); |
| 450 | *rect = SkRectToRectF(src); |
| 451 | } |
| 452 | |
| 453 | bool Transform::TransformRectReverse(RectF* rect) const { |
| 454 | if (matrix_.isIdentity()) |
| 455 | return true; |
| 456 | |
| 457 | SkMatrix44 inverse(SkMatrix44::kUninitialized_Constructor); |
| 458 | if (!matrix_.invert(&inverse)) |
| 459 | return false; |
| 460 | |
| 461 | const SkMatrix& matrix = inverse; |
| 462 | SkRect src = RectFToSkRect(*rect); |
| 463 | matrix.mapRect(&src); |
| 464 | *rect = SkRectToRectF(src); |
| 465 | return true; |
| 466 | } |
| 467 | |
| 468 | void Transform::TransformBox(BoxF* box) const { |
| 469 | BoxF bounds; |
| 470 | bool first_point = true; |
| 471 | for (int corner = 0; corner < 8; ++corner) { |
| 472 | gfx::Point3F point = box->origin(); |
| 473 | point += gfx::Vector3dF(corner & 1 ? box->width() : 0.f, |
| 474 | corner & 2 ? box->height() : 0.f, |
| 475 | corner & 4 ? box->depth() : 0.f); |
| 476 | TransformPoint(&point); |
| 477 | if (first_point) { |
| 478 | bounds.set_origin(point); |
| 479 | first_point = false; |
| 480 | } else { |
| 481 | bounds.ExpandTo(point); |
| 482 | } |
| 483 | } |
| 484 | *box = bounds; |
| 485 | } |
| 486 | |
| 487 | bool Transform::TransformBoxReverse(BoxF* box) const { |
| 488 | gfx::Transform inverse = *this; |
| 489 | if (!GetInverse(&inverse)) |
| 490 | return false; |
| 491 | inverse.TransformBox(box); |
| 492 | return true; |
| 493 | } |
| 494 | |
| 495 | bool Transform::Blend(const Transform& from, double progress) { |
| 496 | DecomposedTransform to_decomp; |
| 497 | DecomposedTransform from_decomp; |
| 498 | if (!DecomposeTransform(&to_decomp, *this) || |
| 499 | !DecomposeTransform(&from_decomp, from)) |
| 500 | return false; |
| 501 | |
| 502 | if (!BlendDecomposedTransforms(&to_decomp, to_decomp, from_decomp, progress)) |
| 503 | return false; |
| 504 | |
| 505 | matrix_ = ComposeTransform(to_decomp).matrix(); |
| 506 | return true; |
| 507 | } |
| 508 | |
Etienne Membrives | 386015a | 2015-02-19 17:27:12 +0100 | [diff] [blame] | 509 | void Transform::RoundTranslationComponents() { |
| 510 | matrix_.set(0, 3, Round(matrix_.get(0, 3))); |
| 511 | matrix_.set(1, 3, Round(matrix_.get(1, 3))); |
| 512 | } |
| 513 | |
| 514 | |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 515 | void Transform::TransformPointInternal(const SkMatrix44& xform, |
| 516 | Point3F* point) const { |
| 517 | if (xform.isIdentity()) |
| 518 | return; |
| 519 | |
| 520 | SkMScalar p[4] = {SkFloatToMScalar(point->x()), SkFloatToMScalar(point->y()), |
| 521 | SkFloatToMScalar(point->z()), 1}; |
| 522 | |
| 523 | xform.mapMScalars(p); |
| 524 | |
| 525 | if (p[3] != SK_MScalar1 && p[3] != 0.f) { |
| 526 | float w_inverse = SK_MScalar1 / p[3]; |
| 527 | point->SetPoint(p[0] * w_inverse, p[1] * w_inverse, p[2] * w_inverse); |
| 528 | } else { |
| 529 | point->SetPoint(p[0], p[1], p[2]); |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | void Transform::TransformPointInternal(const SkMatrix44& xform, |
| 534 | Point* point) const { |
| 535 | if (xform.isIdentity()) |
| 536 | return; |
| 537 | |
| 538 | SkMScalar p[4] = {SkFloatToMScalar(point->x()), SkFloatToMScalar(point->y()), |
| 539 | 0, 1}; |
| 540 | |
| 541 | xform.mapMScalars(p); |
| 542 | |
| 543 | point->SetPoint(ToRoundedInt(p[0]), ToRoundedInt(p[1])); |
| 544 | } |
| 545 | |
| 546 | std::string Transform::ToString() const { |
| 547 | return base::StringPrintf( |
| 548 | "[ %+0.4f %+0.4f %+0.4f %+0.4f \n" |
| 549 | " %+0.4f %+0.4f %+0.4f %+0.4f \n" |
| 550 | " %+0.4f %+0.4f %+0.4f %+0.4f \n" |
| 551 | " %+0.4f %+0.4f %+0.4f %+0.4f ]\n", |
| 552 | matrix_.get(0, 0), |
| 553 | matrix_.get(0, 1), |
| 554 | matrix_.get(0, 2), |
| 555 | matrix_.get(0, 3), |
| 556 | matrix_.get(1, 0), |
| 557 | matrix_.get(1, 1), |
| 558 | matrix_.get(1, 2), |
| 559 | matrix_.get(1, 3), |
| 560 | matrix_.get(2, 0), |
| 561 | matrix_.get(2, 1), |
| 562 | matrix_.get(2, 2), |
| 563 | matrix_.get(2, 3), |
| 564 | matrix_.get(3, 0), |
| 565 | matrix_.get(3, 1), |
| 566 | matrix_.get(3, 2), |
| 567 | matrix_.get(3, 3)); |
| 568 | } |
| 569 | |
| 570 | } // namespace gfx |