|  | // Copyright (c) 2007, Google Inc. | 
|  | // All rights reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // --- | 
|  | // Author: Geoff Pike | 
|  | // | 
|  | // This file provides a minimal cache that can hold a <key, value> pair | 
|  | // with little if any wasted space.  The types of the key and value | 
|  | // must be unsigned integral types or at least have unsigned semantics | 
|  | // for >>, casting, and similar operations. | 
|  | // | 
|  | // Synchronization is not provided.  However, the cache is implemented | 
|  | // as an array of cache entries whose type is chosen at compile time. | 
|  | // If a[i] is atomic on your hardware for the chosen array type then | 
|  | // raciness will not necessarily lead to bugginess.  The cache entries | 
|  | // must be large enough to hold a partial key and a value packed | 
|  | // together.  The partial keys are bit strings of length | 
|  | // kKeybits - kHashbits, and the values are bit strings of length kValuebits. | 
|  | // | 
|  | // In an effort to use minimal space, every cache entry represents | 
|  | // some <key, value> pair; the class provides no way to mark a cache | 
|  | // entry as empty or uninitialized.  In practice, you may want to have | 
|  | // reserved keys or values to get around this limitation.  For example, in | 
|  | // tcmalloc's PageID-to-sizeclass cache, a value of 0 is used as | 
|  | // "unknown sizeclass." | 
|  | // | 
|  | // Usage Considerations | 
|  | // -------------------- | 
|  | // | 
|  | // kHashbits controls the size of the cache.  The best value for | 
|  | // kHashbits will of course depend on the application.  Perhaps try | 
|  | // tuning the value of kHashbits by measuring different values on your | 
|  | // favorite benchmark.  Also remember not to be a pig; other | 
|  | // programs that need resources may suffer if you are. | 
|  | // | 
|  | // The main uses for this class will be when performance is | 
|  | // critical and there's a convenient type to hold the cache's | 
|  | // entries.  As described above, the number of bits required | 
|  | // for a cache entry is (kKeybits - kHashbits) + kValuebits.  Suppose | 
|  | // kKeybits + kValuebits is 43.  Then it probably makes sense to | 
|  | // chose kHashbits >= 11 so that cache entries fit in a uint32. | 
|  | // | 
|  | // On the other hand, suppose kKeybits = kValuebits = 64.  Then | 
|  | // using this class may be less worthwhile.  You'll probably | 
|  | // be using 128 bits for each entry anyway, so maybe just pick | 
|  | // a hash function, H, and use an array indexed by H(key): | 
|  | //    void Put(K key, V value) { a_[H(key)] = pair<K, V>(key, value); } | 
|  | //    V GetOrDefault(K key, V default) { const pair<K, V> &p = a_[H(key)]; ... } | 
|  | //    etc. | 
|  | // | 
|  | // Further Details | 
|  | // --------------- | 
|  | // | 
|  | // For caches used only by one thread, the following is true: | 
|  | // 1. For a cache c, | 
|  | //      (c.Put(key, value), c.GetOrDefault(key, 0)) == value | 
|  | //    and | 
|  | //      (c.Put(key, value), <...>, c.GetOrDefault(key, 0)) == value | 
|  | //    if the elided code contains no c.Put calls. | 
|  | // | 
|  | // 2. Has(key) will return false if no <key, value> pair with that key | 
|  | //    has ever been Put.  However, a newly initialized cache will have | 
|  | //    some <key, value> pairs already present.  When you create a new | 
|  | //    cache, you must specify an "initial value."  The initialization | 
|  | //    procedure is equivalent to Clear(initial_value), which is | 
|  | //    equivalent to Put(k, initial_value) for all keys k from 0 to | 
|  | //    2^kHashbits - 1. | 
|  | // | 
|  | // 3. If key and key' differ then the only way Put(key, value) may | 
|  | //    cause Has(key') to change is that Has(key') may change from true to | 
|  | //    false. Furthermore, a Put() call that doesn't change Has(key') | 
|  | //    doesn't change GetOrDefault(key', ...) either. | 
|  | // | 
|  | // Implementation details: | 
|  | // | 
|  | // This is a direct-mapped cache with 2^kHashbits entries; the hash | 
|  | // function simply takes the low bits of the key.  We store whole keys | 
|  | // if a whole key plus a whole value fits in an entry.  Otherwise, an | 
|  | // entry is the high bits of a key and a value, packed together. | 
|  | // E.g., a 20 bit key and a 7 bit value only require a uint16 for each | 
|  | // entry if kHashbits >= 11. | 
|  | // | 
|  | // Alternatives to this scheme will be added as needed. | 
|  |  | 
|  | #ifndef TCMALLOC_PACKED_CACHE_INL_H_ | 
|  | #define TCMALLOC_PACKED_CACHE_INL_H_ | 
|  |  | 
|  | #include "config.h" | 
|  | #include <stddef.h>                     // for size_t | 
|  | #ifdef HAVE_STDINT_H | 
|  | #include <stdint.h>                     // for uintptr_t | 
|  | #endif | 
|  | #include "base/basictypes.h" | 
|  | #include "internal_logging.h" | 
|  |  | 
|  | // A safe way of doing "(1 << n) - 1" -- without worrying about overflow | 
|  | // Note this will all be resolved to a constant expression at compile-time | 
|  | #define N_ONES_(IntType, N)                                     \ | 
|  | ( (N) == 0 ? 0 : ((static_cast<IntType>(1) << ((N)-1))-1 +    \ | 
|  | (static_cast<IntType>(1) << ((N)-1))) ) | 
|  |  | 
|  | // The types K and V provide upper bounds on the number of valid keys | 
|  | // and values, but we explicitly require the keys to be less than | 
|  | // 2^kKeybits and the values to be less than 2^kValuebits.  The size of | 
|  | // the table is controlled by kHashbits, and the type of each entry in | 
|  | // the cache is T.  See also the big comment at the top of the file. | 
|  | template <int kKeybits, typename T> | 
|  | class PackedCache { | 
|  | public: | 
|  | typedef uintptr_t K; | 
|  | typedef size_t V; | 
|  | #ifdef TCMALLOC_SMALL_BUT_SLOW | 
|  | // Decrease the size map cache if running in the small memory mode. | 
|  | static const int kHashbits = 12; | 
|  | #else | 
|  | // We don't want the hash map to occupy 512K memory at Chromium, so | 
|  | // kHashbits is decreased from 16 to 12. | 
|  | static const int kHashbits = 12; | 
|  | #endif | 
|  | static const int kValuebits = 7; | 
|  | static const bool kUseWholeKeys = kKeybits + kValuebits <= 8 * sizeof(T); | 
|  |  | 
|  | explicit PackedCache(V initial_value) { | 
|  | COMPILE_ASSERT(kKeybits <= sizeof(K) * 8, key_size); | 
|  | COMPILE_ASSERT(kValuebits <= sizeof(V) * 8, value_size); | 
|  | COMPILE_ASSERT(kHashbits <= kKeybits, hash_function); | 
|  | COMPILE_ASSERT(kKeybits - kHashbits + kValuebits <= kTbits, | 
|  | entry_size_must_be_big_enough); | 
|  | Clear(initial_value); | 
|  | } | 
|  |  | 
|  | void Put(K key, V value) { | 
|  | ASSERT(key == (key & kKeyMask)); | 
|  | ASSERT(value == (value & kValueMask)); | 
|  | array_[Hash(key)] = KeyToUpper(key) | value; | 
|  | } | 
|  |  | 
|  | bool Has(K key) const { | 
|  | ASSERT(key == (key & kKeyMask)); | 
|  | return KeyMatch(array_[Hash(key)], key); | 
|  | } | 
|  |  | 
|  | V GetOrDefault(K key, V default_value) const { | 
|  | // As with other code in this class, we touch array_ as few times | 
|  | // as we can.  Assuming entries are read atomically (e.g., their | 
|  | // type is uintptr_t on most hardware) then certain races are | 
|  | // harmless. | 
|  | ASSERT(key == (key & kKeyMask)); | 
|  | T entry = array_[Hash(key)]; | 
|  | return KeyMatch(entry, key) ? EntryToValue(entry) : default_value; | 
|  | } | 
|  |  | 
|  | void Clear(V value) { | 
|  | ASSERT(value == (value & kValueMask)); | 
|  | for (int i = 0; i < 1 << kHashbits; i++) { | 
|  | ASSERT(kUseWholeKeys || KeyToUpper(i) == 0); | 
|  | array_[i] = kUseWholeKeys ? (value | KeyToUpper(i)) : value; | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | // We are going to pack a value and the upper part of a key (or a | 
|  | // whole key) into an entry of type T.  The UPPER type is for the | 
|  | // upper part of a key, after the key has been masked and shifted | 
|  | // for inclusion in an entry. | 
|  | typedef T UPPER; | 
|  |  | 
|  | static V EntryToValue(T t) { return t & kValueMask; } | 
|  |  | 
|  | // If we have space for a whole key, we just shift it left. | 
|  | // Otherwise kHashbits determines where in a K to find the upper | 
|  | // part of the key, and kValuebits determines where in the entry to | 
|  | // put it. | 
|  | static UPPER KeyToUpper(K k) { | 
|  | if (kUseWholeKeys) { | 
|  | return static_cast<T>(k) << kValuebits; | 
|  | } else { | 
|  | const int shift = kHashbits - kValuebits; | 
|  | // Assume kHashbits >= kValuebits.  It'd be easy to lift this assumption. | 
|  | return static_cast<T>(k >> shift) & kUpperMask; | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t Hash(K key) { | 
|  | return static_cast<size_t>(key) & N_ONES_(size_t, kHashbits); | 
|  | } | 
|  |  | 
|  | // Does the entry match the relevant part of the given key? | 
|  | static bool KeyMatch(T entry, K key) { | 
|  | return kUseWholeKeys ? | 
|  | (entry >> kValuebits == key) : | 
|  | ((KeyToUpper(key) ^ entry) & kUpperMask) == 0; | 
|  | } | 
|  |  | 
|  | static const int kTbits = 8 * sizeof(T); | 
|  | static const int kUpperbits = kUseWholeKeys ? kKeybits : kKeybits - kHashbits; | 
|  |  | 
|  | // For masking a K. | 
|  | static const K kKeyMask = N_ONES_(K, kKeybits); | 
|  |  | 
|  | // For masking a T. | 
|  | static const T kUpperMask = N_ONES_(T, kUpperbits) << kValuebits; | 
|  |  | 
|  | // For masking a V or a T. | 
|  | static const V kValueMask = N_ONES_(V, kValuebits); | 
|  |  | 
|  | // array_ is the cache.  Its elements are volatile because any | 
|  | // thread can write any array element at any time. | 
|  | volatile T array_[1 << kHashbits]; | 
|  | }; | 
|  |  | 
|  | #undef N_ONES_ | 
|  |  | 
|  | #endif  // TCMALLOC_PACKED_CACHE_INL_H_ |