|  | // Copyright 2013 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "net/quic/quic_data_stream.h" | 
|  |  | 
|  | #include "net/quic/quic_ack_notifier.h" | 
|  | #include "net/quic/quic_connection.h" | 
|  | #include "net/quic/quic_utils.h" | 
|  | #include "net/quic/quic_write_blocked_list.h" | 
|  | #include "net/quic/spdy_utils.h" | 
|  | #include "net/quic/test_tools/quic_flow_controller_peer.h" | 
|  | #include "net/quic/test_tools/quic_session_peer.h" | 
|  | #include "net/quic/test_tools/quic_test_utils.h" | 
|  | #include "net/quic/test_tools/reliable_quic_stream_peer.h" | 
|  | #include "net/test/gtest_util.h" | 
|  | #include "testing/gmock/include/gmock/gmock.h" | 
|  |  | 
|  | using base::StringPiece; | 
|  | using std::min; | 
|  | using std::string; | 
|  | using testing::AnyNumber; | 
|  | using testing::InSequence; | 
|  | using testing::Return; | 
|  | using testing::SaveArg; | 
|  | using testing::StrictMock; | 
|  | using testing::_; | 
|  |  | 
|  | namespace net { | 
|  | namespace test { | 
|  | namespace { | 
|  |  | 
|  | const bool kShouldProcessData = true; | 
|  |  | 
|  | class TestStream : public QuicDataStream { | 
|  | public: | 
|  | TestStream(QuicStreamId id, | 
|  | QuicSession* session, | 
|  | bool should_process_data) | 
|  | : QuicDataStream(id, session), | 
|  | should_process_data_(should_process_data) {} | 
|  |  | 
|  | uint32 ProcessData(const char* data, uint32 data_len) override { | 
|  | EXPECT_NE(0u, data_len); | 
|  | DVLOG(1) << "ProcessData data_len: " << data_len; | 
|  | data_ += string(data, data_len); | 
|  | return should_process_data_ ? data_len : 0; | 
|  | } | 
|  |  | 
|  | using ReliableQuicStream::WriteOrBufferData; | 
|  | using ReliableQuicStream::CloseReadSide; | 
|  | using ReliableQuicStream::CloseWriteSide; | 
|  |  | 
|  | const string& data() const { return data_; } | 
|  |  | 
|  | private: | 
|  | bool should_process_data_; | 
|  | string data_; | 
|  | }; | 
|  |  | 
|  | class QuicDataStreamTest : public ::testing::TestWithParam<QuicVersion> { | 
|  | public: | 
|  | QuicDataStreamTest() { | 
|  | headers_[":host"] = "www.google.com"; | 
|  | headers_[":path"] = "/index.hml"; | 
|  | headers_[":scheme"] = "https"; | 
|  | headers_["cookie"] = | 
|  | "__utma=208381060.1228362404.1372200928.1372200928.1372200928.1; " | 
|  | "__utmc=160408618; " | 
|  | "GX=DQAAAOEAAACWJYdewdE9rIrW6qw3PtVi2-d729qaa-74KqOsM1NVQblK4VhX" | 
|  | "hoALMsy6HOdDad2Sz0flUByv7etmo3mLMidGrBoljqO9hSVA40SLqpG_iuKKSHX" | 
|  | "RW3Np4bq0F0SDGDNsW0DSmTS9ufMRrlpARJDS7qAI6M3bghqJp4eABKZiRqebHT" | 
|  | "pMU-RXvTI5D5oCF1vYxYofH_l1Kviuiy3oQ1kS1enqWgbhJ2t61_SNdv-1XJIS0" | 
|  | "O3YeHLmVCs62O6zp89QwakfAWK9d3IDQvVSJzCQsvxvNIvaZFa567MawWlXg0Rh" | 
|  | "1zFMi5vzcns38-8_Sns; " | 
|  | "GA=v*2%2Fmem*57968640*47239936%2Fmem*57968640*47114716%2Fno-nm-" | 
|  | "yj*15%2Fno-cc-yj*5%2Fpc-ch*133685%2Fpc-s-cr*133947%2Fpc-s-t*1339" | 
|  | "47%2Fno-nm-yj*4%2Fno-cc-yj*1%2Fceft-as*1%2Fceft-nqas*0%2Fad-ra-c" | 
|  | "v_p%2Fad-nr-cv_p-f*1%2Fad-v-cv_p*859%2Fad-ns-cv_p-f*1%2Ffn-v-ad%" | 
|  | "2Fpc-t*250%2Fpc-cm*461%2Fpc-s-cr*722%2Fpc-s-t*722%2Fau_p*4" | 
|  | "SICAID=AJKiYcHdKgxum7KMXG0ei2t1-W4OD1uW-ecNsCqC0wDuAXiDGIcT_HA2o1" | 
|  | "3Rs1UKCuBAF9g8rWNOFbxt8PSNSHFuIhOo2t6bJAVpCsMU5Laa6lewuTMYI8MzdQP" | 
|  | "ARHKyW-koxuhMZHUnGBJAM1gJODe0cATO_KGoX4pbbFxxJ5IicRxOrWK_5rU3cdy6" | 
|  | "edlR9FsEdH6iujMcHkbE5l18ehJDwTWmBKBzVD87naobhMMrF6VvnDGxQVGp9Ir_b" | 
|  | "Rgj3RWUoPumQVCxtSOBdX0GlJOEcDTNCzQIm9BSfetog_eP_TfYubKudt5eMsXmN6" | 
|  | "QnyXHeGeK2UINUzJ-D30AFcpqYgH9_1BvYSpi7fc7_ydBU8TaD8ZRxvtnzXqj0RfG" | 
|  | "tuHghmv3aD-uzSYJ75XDdzKdizZ86IG6Fbn1XFhYZM-fbHhm3mVEXnyRW4ZuNOLFk" | 
|  | "Fas6LMcVC6Q8QLlHYbXBpdNFuGbuZGUnav5C-2I_-46lL0NGg3GewxGKGHvHEfoyn" | 
|  | "EFFlEYHsBQ98rXImL8ySDycdLEFvBPdtctPmWCfTxwmoSMLHU2SCVDhbqMWU5b0yr" | 
|  | "JBCScs_ejbKaqBDoB7ZGxTvqlrB__2ZmnHHjCr8RgMRtKNtIeuZAo "; | 
|  | } | 
|  |  | 
|  | void Initialize(bool stream_should_process_data) { | 
|  | connection_ = new testing::StrictMock<MockConnection>( | 
|  | Perspective::IS_SERVER, SupportedVersions(GetParam())); | 
|  | session_.reset(new testing::StrictMock<MockSession>(connection_)); | 
|  | stream_.reset(new TestStream(kClientDataStreamId1, session_.get(), | 
|  | stream_should_process_data)); | 
|  | stream2_.reset(new TestStream(kClientDataStreamId2, session_.get(), | 
|  | stream_should_process_data)); | 
|  | write_blocked_list_ = | 
|  | QuicSessionPeer::GetWriteBlockedStreams(session_.get()); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | MockConnection* connection_; | 
|  | scoped_ptr<MockSession> session_; | 
|  | scoped_ptr<TestStream> stream_; | 
|  | scoped_ptr<TestStream> stream2_; | 
|  | SpdyHeaderBlock headers_; | 
|  | QuicWriteBlockedList* write_blocked_list_; | 
|  | }; | 
|  |  | 
|  | INSTANTIATE_TEST_CASE_P(Tests, QuicDataStreamTest, | 
|  | ::testing::ValuesIn(QuicSupportedVersions())); | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, ProcessHeaders) { | 
|  | Initialize(kShouldProcessData); | 
|  |  | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | stream_->OnStreamHeadersPriority(QuicUtils::HighestPriority()); | 
|  | stream_->OnStreamHeaders(headers); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  | EXPECT_EQ(QuicUtils::HighestPriority(), stream_->EffectivePriority()); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | EXPECT_FALSE(stream_->IsDoneReading()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, ProcessHeadersAndBody) { | 
|  | Initialize(kShouldProcessData); | 
|  |  | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | string body = "this is the body"; | 
|  |  | 
|  | stream_->OnStreamHeaders(headers); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  | QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body)); | 
|  | stream_->OnStreamFrame(frame); | 
|  |  | 
|  | EXPECT_EQ(headers + body, stream_->data()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, ProcessHeadersAndBodyFragments) { | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | string body = "this is the body"; | 
|  |  | 
|  | for (size_t fragment_size = 1; fragment_size < body.size(); | 
|  | ++fragment_size) { | 
|  | Initialize(kShouldProcessData); | 
|  | for (size_t offset = 0; offset < headers.size(); | 
|  | offset += fragment_size) { | 
|  | size_t remaining_data = headers.size() - offset; | 
|  | StringPiece fragment(headers.data() + offset, | 
|  | min(fragment_size, remaining_data)); | 
|  | stream_->OnStreamHeaders(fragment); | 
|  | } | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  | for (size_t offset = 0; offset < body.size(); offset += fragment_size) { | 
|  | size_t remaining_data = body.size() - offset; | 
|  | StringPiece fragment(body.data() + offset, | 
|  | min(fragment_size, remaining_data)); | 
|  | QuicStreamFrame frame(kClientDataStreamId1, false, offset, | 
|  | MakeIOVector(fragment)); | 
|  | stream_->OnStreamFrame(frame); | 
|  | } | 
|  | ASSERT_EQ(headers + body, | 
|  | stream_->data()) << "fragment_size: " << fragment_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, ProcessHeadersAndBodyFragmentsSplit) { | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | string body = "this is the body"; | 
|  |  | 
|  | for (size_t split_point = 1; split_point < body.size() - 1; ++split_point) { | 
|  | Initialize(kShouldProcessData); | 
|  | StringPiece headers1(headers.data(), split_point); | 
|  | stream_->OnStreamHeaders(headers1); | 
|  |  | 
|  | StringPiece headers2(headers.data() + split_point, | 
|  | headers.size() - split_point); | 
|  | stream_->OnStreamHeaders(headers2); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  |  | 
|  | StringPiece fragment1(body.data(), split_point); | 
|  | QuicStreamFrame frame1(kClientDataStreamId1, false, 0, | 
|  | MakeIOVector(fragment1)); | 
|  | stream_->OnStreamFrame(frame1); | 
|  |  | 
|  | StringPiece fragment2(body.data() + split_point, | 
|  | body.size() - split_point); | 
|  | QuicStreamFrame frame2(kClientDataStreamId1, false, split_point, | 
|  | MakeIOVector(fragment2)); | 
|  | stream_->OnStreamFrame(frame2); | 
|  |  | 
|  | ASSERT_EQ(headers + body, | 
|  | stream_->data()) << "split_point: " << split_point; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, ProcessHeadersAndBodyReadv) { | 
|  | Initialize(!kShouldProcessData); | 
|  |  | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | string body = "this is the body"; | 
|  |  | 
|  | stream_->OnStreamHeaders(headers); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  | QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body)); | 
|  | stream_->OnStreamFrame(frame); | 
|  |  | 
|  | char buffer[2048]; | 
|  | ASSERT_LT(headers.length() + body.length(), arraysize(buffer)); | 
|  | struct iovec vec; | 
|  | vec.iov_base = buffer; | 
|  | vec.iov_len = arraysize(buffer); | 
|  |  | 
|  | size_t bytes_read = stream_->Readv(&vec, 1); | 
|  | EXPECT_EQ(headers.length(), bytes_read); | 
|  | EXPECT_EQ(headers, string(buffer, bytes_read)); | 
|  |  | 
|  | bytes_read = stream_->Readv(&vec, 1); | 
|  | EXPECT_EQ(body.length(), bytes_read); | 
|  | EXPECT_EQ(body, string(buffer, bytes_read)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, ProcessHeadersAndBodyIncrementalReadv) { | 
|  | Initialize(!kShouldProcessData); | 
|  |  | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | string body = "this is the body"; | 
|  | stream_->OnStreamHeaders(headers); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  | QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body)); | 
|  | stream_->OnStreamFrame(frame); | 
|  |  | 
|  | char buffer[1]; | 
|  | struct iovec vec; | 
|  | vec.iov_base = buffer; | 
|  | vec.iov_len = arraysize(buffer); | 
|  |  | 
|  | string data = headers + body; | 
|  | for (size_t i = 0; i < data.length(); ++i) { | 
|  | size_t bytes_read = stream_->Readv(&vec, 1); | 
|  | ASSERT_EQ(1u, bytes_read); | 
|  | EXPECT_EQ(data.data()[i], buffer[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, ProcessHeadersUsingReadvWithMultipleIovecs) { | 
|  | Initialize(!kShouldProcessData); | 
|  |  | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | string body = "this is the body"; | 
|  | stream_->OnStreamHeaders(headers); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  | QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body)); | 
|  | stream_->OnStreamFrame(frame); | 
|  |  | 
|  | char buffer1[1]; | 
|  | char buffer2[1]; | 
|  | struct iovec vec[2]; | 
|  | vec[0].iov_base = buffer1; | 
|  | vec[0].iov_len = arraysize(buffer1); | 
|  | vec[1].iov_base = buffer2; | 
|  | vec[1].iov_len = arraysize(buffer2); | 
|  | string data = headers + body; | 
|  | for (size_t i = 0; i < data.length(); i += 2) { | 
|  | size_t bytes_read = stream_->Readv(vec, 2); | 
|  | ASSERT_EQ(2u, bytes_read) << i; | 
|  | ASSERT_EQ(data.data()[i], buffer1[0]) << i; | 
|  | ASSERT_EQ(data.data()[i + 1], buffer2[0]) << i; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, StreamFlowControlBlocked) { | 
|  | // Tests that we send a BLOCKED frame to the peer when we attempt to write, | 
|  | // but are flow control blocked. | 
|  | Initialize(kShouldProcessData); | 
|  |  | 
|  | // Set a small flow control limit. | 
|  | const uint64 kWindow = 36; | 
|  | QuicFlowControllerPeer::SetSendWindowOffset(stream_->flow_controller(), | 
|  | kWindow); | 
|  | EXPECT_EQ(kWindow, QuicFlowControllerPeer::SendWindowOffset( | 
|  | stream_->flow_controller())); | 
|  |  | 
|  | // Try to send more data than the flow control limit allows. | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | string body; | 
|  | const uint64 kOverflow = 15; | 
|  | GenerateBody(&body, kWindow + kOverflow); | 
|  |  | 
|  | EXPECT_CALL(*connection_, SendBlocked(kClientDataStreamId1)); | 
|  | EXPECT_CALL(*session_, WritevData(kClientDataStreamId1, _, _, _, _, _)) | 
|  | .WillOnce(Return(QuicConsumedData(kWindow, true))); | 
|  | stream_->WriteOrBufferData(body, false, nullptr); | 
|  |  | 
|  | // Should have sent as much as possible, resulting in no send window left. | 
|  | EXPECT_EQ(0u, | 
|  | QuicFlowControllerPeer::SendWindowSize(stream_->flow_controller())); | 
|  |  | 
|  | // And we should have queued the overflowed data. | 
|  | EXPECT_EQ(kOverflow, | 
|  | ReliableQuicStreamPeer::SizeOfQueuedData(stream_.get())); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, StreamFlowControlNoWindowUpdateIfNotConsumed) { | 
|  | // The flow control receive window decreases whenever we add new bytes to the | 
|  | // sequencer, whether they are consumed immediately or buffered. However we | 
|  | // only send WINDOW_UPDATE frames based on increasing number of bytes | 
|  | // consumed. | 
|  |  | 
|  | // Don't process data - it will be buffered instead. | 
|  | Initialize(!kShouldProcessData); | 
|  |  | 
|  | // Expect no WINDOW_UPDATE frames to be sent. | 
|  | EXPECT_CALL(*connection_, SendWindowUpdate(_, _)).Times(0); | 
|  |  | 
|  | // Set a small flow control receive window. | 
|  | const uint64 kWindow = 36; | 
|  | QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(), | 
|  | kWindow); | 
|  | QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(), | 
|  | kWindow); | 
|  | EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowOffset( | 
|  | stream_->flow_controller())); | 
|  |  | 
|  | // Stream receives enough data to fill a fraction of the receive window. | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | string body; | 
|  | GenerateBody(&body, kWindow / 3); | 
|  | stream_->OnStreamHeaders(headers); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  |  | 
|  | QuicStreamFrame frame1(kClientDataStreamId1, false, 0, MakeIOVector(body)); | 
|  | stream_->OnStreamFrame(frame1); | 
|  | EXPECT_EQ(kWindow - (kWindow / 3), QuicFlowControllerPeer::ReceiveWindowSize( | 
|  | stream_->flow_controller())); | 
|  |  | 
|  | // Now receive another frame which results in the receive window being over | 
|  | // half full. This should all be buffered, decreasing the receive window but | 
|  | // not sending WINDOW_UPDATE. | 
|  | QuicStreamFrame frame2(kClientDataStreamId1, false, kWindow / 3, | 
|  | MakeIOVector(body)); | 
|  | stream_->OnStreamFrame(frame2); | 
|  | EXPECT_EQ( | 
|  | kWindow - (2 * kWindow / 3), | 
|  | QuicFlowControllerPeer::ReceiveWindowSize(stream_->flow_controller())); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, StreamFlowControlWindowUpdate) { | 
|  | // Tests that on receipt of data, the stream updates its receive window offset | 
|  | // appropriately, and sends WINDOW_UPDATE frames when its receive window drops | 
|  | // too low. | 
|  | Initialize(kShouldProcessData); | 
|  |  | 
|  | // Set a small flow control limit. | 
|  | const uint64 kWindow = 36; | 
|  | QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(), | 
|  | kWindow); | 
|  | QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(), | 
|  | kWindow); | 
|  | EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowOffset( | 
|  | stream_->flow_controller())); | 
|  |  | 
|  | // Stream receives enough data to fill a fraction of the receive window. | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | string body; | 
|  | GenerateBody(&body, kWindow / 3); | 
|  | stream_->OnStreamHeaders(headers); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  |  | 
|  | QuicStreamFrame frame1(kClientDataStreamId1, false, 0, MakeIOVector(body)); | 
|  | stream_->OnStreamFrame(frame1); | 
|  | EXPECT_EQ(kWindow - (kWindow / 3), QuicFlowControllerPeer::ReceiveWindowSize( | 
|  | stream_->flow_controller())); | 
|  |  | 
|  | // Now receive another frame which results in the receive window being over | 
|  | // half full.  This will trigger the stream to increase its receive window | 
|  | // offset and send a WINDOW_UPDATE. The result will be again an available | 
|  | // window of kWindow bytes. | 
|  | QuicStreamFrame frame2(kClientDataStreamId1, false, kWindow / 3, | 
|  | MakeIOVector(body)); | 
|  | EXPECT_CALL(*connection_, | 
|  | SendWindowUpdate(kClientDataStreamId1, | 
|  | QuicFlowControllerPeer::ReceiveWindowOffset( | 
|  | stream_->flow_controller()) + | 
|  | 2 * kWindow / 3)); | 
|  | stream_->OnStreamFrame(frame2); | 
|  | EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowSize( | 
|  | stream_->flow_controller())); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, ConnectionFlowControlWindowUpdate) { | 
|  | // Tests that on receipt of data, the connection updates its receive window | 
|  | // offset appropriately, and sends WINDOW_UPDATE frames when its receive | 
|  | // window drops too low. | 
|  | Initialize(kShouldProcessData); | 
|  |  | 
|  | // Set a small flow control limit for streams and connection. | 
|  | const uint64 kWindow = 36; | 
|  | QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(), | 
|  | kWindow); | 
|  | QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(), | 
|  | kWindow); | 
|  | QuicFlowControllerPeer::SetReceiveWindowOffset(stream2_->flow_controller(), | 
|  | kWindow); | 
|  | QuicFlowControllerPeer::SetMaxReceiveWindow(stream2_->flow_controller(), | 
|  | kWindow); | 
|  | QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(), | 
|  | kWindow); | 
|  | QuicFlowControllerPeer::SetMaxReceiveWindow(session_->flow_controller(), | 
|  | kWindow); | 
|  |  | 
|  | // Supply headers to both streams so that they are happy to receive data. | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | stream_->OnStreamHeaders(headers); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  | stream2_->OnStreamHeaders(headers); | 
|  | stream2_->OnStreamHeadersComplete(false, headers.size()); | 
|  |  | 
|  | // Each stream gets a quarter window of data. This should not trigger a | 
|  | // WINDOW_UPDATE for either stream, nor for the connection. | 
|  | string body; | 
|  | GenerateBody(&body, kWindow / 4); | 
|  | QuicStreamFrame frame1(kClientDataStreamId1, false, 0, MakeIOVector(body)); | 
|  | stream_->OnStreamFrame(frame1); | 
|  | QuicStreamFrame frame2(kClientDataStreamId2, false, 0, MakeIOVector(body)); | 
|  | stream2_->OnStreamFrame(frame2); | 
|  |  | 
|  | // Now receive a further single byte on one stream - again this does not | 
|  | // trigger a stream WINDOW_UPDATE, but now the connection flow control window | 
|  | // is over half full and thus a connection WINDOW_UPDATE is sent. | 
|  | EXPECT_CALL(*connection_, SendWindowUpdate(kClientDataStreamId1, _)).Times(0); | 
|  | EXPECT_CALL(*connection_, SendWindowUpdate(kClientDataStreamId2, _)).Times(0); | 
|  | EXPECT_CALL(*connection_, | 
|  | SendWindowUpdate(0, QuicFlowControllerPeer::ReceiveWindowOffset( | 
|  | session_->flow_controller()) + | 
|  | 1 + kWindow / 2)); | 
|  | QuicStreamFrame frame3(kClientDataStreamId1, false, (kWindow / 4), | 
|  | MakeIOVector("a")); | 
|  | stream_->OnStreamFrame(frame3); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, StreamFlowControlViolation) { | 
|  | // Tests that on if the peer sends too much data (i.e. violates the flow | 
|  | // control protocol), then we terminate the connection. | 
|  |  | 
|  | // Stream should not process data, so that data gets buffered in the | 
|  | // sequencer, triggering flow control limits. | 
|  | Initialize(!kShouldProcessData); | 
|  |  | 
|  | // Set a small flow control limit. | 
|  | const uint64 kWindow = 50; | 
|  | QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(), | 
|  | kWindow); | 
|  |  | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | stream_->OnStreamHeaders(headers); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  |  | 
|  | // Receive data to overflow the window, violating flow control. | 
|  | string body; | 
|  | GenerateBody(&body, kWindow + 1); | 
|  | QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body)); | 
|  | EXPECT_CALL(*connection_, | 
|  | SendConnectionClose(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA)); | 
|  | stream_->OnStreamFrame(frame); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, ConnectionFlowControlViolation) { | 
|  | // Tests that on if the peer sends too much data (i.e. violates the flow | 
|  | // control protocol), at the connection level (rather than the stream level) | 
|  | // then we terminate the connection. | 
|  |  | 
|  | // Stream should not process data, so that data gets buffered in the | 
|  | // sequencer, triggering flow control limits. | 
|  | Initialize(!kShouldProcessData); | 
|  |  | 
|  | // Set a small flow control window on streams, and connection. | 
|  | const uint64 kStreamWindow = 50; | 
|  | const uint64 kConnectionWindow = 10; | 
|  | QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(), | 
|  | kStreamWindow); | 
|  | QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(), | 
|  | kConnectionWindow); | 
|  |  | 
|  | string headers = | 
|  | SpdyUtils::SerializeUncompressedHeaders(headers_, GetParam()); | 
|  | stream_->OnStreamHeaders(headers); | 
|  | EXPECT_EQ(headers, stream_->data()); | 
|  | stream_->OnStreamHeadersComplete(false, headers.size()); | 
|  |  | 
|  | // Send enough data to overflow the connection level flow control window. | 
|  | string body; | 
|  | GenerateBody(&body, kConnectionWindow + 1); | 
|  | EXPECT_LT(body.size(),  kStreamWindow); | 
|  | QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body)); | 
|  |  | 
|  | EXPECT_CALL(*connection_, | 
|  | SendConnectionClose(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA)); | 
|  | stream_->OnStreamFrame(frame); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicDataStreamTest, StreamFlowControlFinNotBlocked) { | 
|  | // An attempt to write a FIN with no data should not be flow control blocked, | 
|  | // even if the send window is 0. | 
|  |  | 
|  | Initialize(kShouldProcessData); | 
|  |  | 
|  | // Set a flow control limit of zero. | 
|  | QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(), 0); | 
|  | EXPECT_EQ(0u, QuicFlowControllerPeer::ReceiveWindowOffset( | 
|  | stream_->flow_controller())); | 
|  |  | 
|  | // Send a frame with a FIN but no data. This should not be blocked. | 
|  | string body = ""; | 
|  | bool fin = true; | 
|  |  | 
|  | EXPECT_CALL(*connection_, SendBlocked(kClientDataStreamId1)).Times(0); | 
|  | EXPECT_CALL(*session_, WritevData(kClientDataStreamId1, _, _, _, _, _)) | 
|  | .WillOnce(Return(QuicConsumedData(0, fin))); | 
|  |  | 
|  | stream_->WriteOrBufferData(body, fin, nullptr); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  | }  // namespace test | 
|  | }  // namespace net |