|  | // Copyright 2013 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "net/quic/test_tools/crypto_test_utils.h" | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/ec.h> | 
|  | #include <openssl/ecdsa.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/obj_mac.h> | 
|  | #include <openssl/sha.h> | 
|  |  | 
|  | #include "crypto/openssl_util.h" | 
|  | #include "crypto/scoped_openssl_types.h" | 
|  | #include "crypto/secure_hash.h" | 
|  | #include "net/quic/crypto/channel_id.h" | 
|  |  | 
|  | using base::StringPiece; | 
|  | using std::string; | 
|  |  | 
|  | namespace net { | 
|  |  | 
|  | namespace test { | 
|  |  | 
|  | class TestChannelIDKey : public ChannelIDKey { | 
|  | public: | 
|  | explicit TestChannelIDKey(EVP_PKEY* ecdsa_key) : ecdsa_key_(ecdsa_key) {} | 
|  | ~TestChannelIDKey() override {} | 
|  |  | 
|  | // ChannelIDKey implementation. | 
|  |  | 
|  | bool Sign(StringPiece signed_data, string* out_signature) const override { | 
|  | crypto::ScopedEVP_MD_CTX md_ctx(EVP_MD_CTX_create()); | 
|  | if (!md_ctx || | 
|  | EVP_DigestSignInit(md_ctx.get(), nullptr, EVP_sha256(), nullptr, | 
|  | ecdsa_key_.get()) != 1) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EVP_DigestUpdate(md_ctx.get(), ChannelIDVerifier::kContextStr, | 
|  | strlen(ChannelIDVerifier::kContextStr) + 1); | 
|  | EVP_DigestUpdate(md_ctx.get(), ChannelIDVerifier::kClientToServerStr, | 
|  | strlen(ChannelIDVerifier::kClientToServerStr) + 1); | 
|  | EVP_DigestUpdate(md_ctx.get(), signed_data.data(), signed_data.size()); | 
|  |  | 
|  | size_t sig_len; | 
|  | if (!EVP_DigestSignFinal(md_ctx.get(), nullptr, &sig_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | scoped_ptr<uint8[]> der_sig(new uint8[sig_len]); | 
|  | if (!EVP_DigestSignFinal(md_ctx.get(), der_sig.get(), &sig_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint8* derp = der_sig.get(); | 
|  | crypto::ScopedECDSA_SIG sig( | 
|  | d2i_ECDSA_SIG(nullptr, const_cast<const uint8**>(&derp), sig_len)); | 
|  | if (sig.get() == nullptr) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The signature consists of a pair of 32-byte numbers. | 
|  | static const size_t kSignatureLength = 32 * 2; | 
|  | scoped_ptr<uint8[]> signature(new uint8[kSignatureLength]); | 
|  | if (!BN_bn2bin_padded(&signature[0], 32, sig->r) || | 
|  | !BN_bn2bin_padded(&signature[32], 32, sig->s)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *out_signature = string(reinterpret_cast<char*>(signature.get()), | 
|  | kSignatureLength); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | string SerializeKey() const override { | 
|  | // i2d_PublicKey will produce an ANSI X9.62 public key which, for a P-256 | 
|  | // key, is 0x04 (meaning uncompressed) followed by the x and y field | 
|  | // elements as 32-byte, big-endian numbers. | 
|  | static const int kExpectedKeyLength = 65; | 
|  |  | 
|  | int len = i2d_PublicKey(ecdsa_key_.get(), nullptr); | 
|  | if (len != kExpectedKeyLength) { | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | uint8 buf[kExpectedKeyLength]; | 
|  | uint8* derp = buf; | 
|  | i2d_PublicKey(ecdsa_key_.get(), &derp); | 
|  |  | 
|  | return string(reinterpret_cast<char*>(buf + 1), kExpectedKeyLength - 1); | 
|  | } | 
|  |  | 
|  | private: | 
|  | crypto::ScopedEVP_PKEY ecdsa_key_; | 
|  | }; | 
|  |  | 
|  | class TestChannelIDSource : public ChannelIDSource { | 
|  | public: | 
|  | ~TestChannelIDSource() override {} | 
|  |  | 
|  | // ChannelIDSource implementation. | 
|  |  | 
|  | QuicAsyncStatus GetChannelIDKey( | 
|  | const string& hostname, | 
|  | scoped_ptr<ChannelIDKey>* channel_id_key, | 
|  | ChannelIDSourceCallback* /*callback*/) override { | 
|  | channel_id_key->reset(new TestChannelIDKey(HostnameToKey(hostname))); | 
|  | return QUIC_SUCCESS; | 
|  | } | 
|  |  | 
|  | private: | 
|  | static EVP_PKEY* HostnameToKey(const string& hostname) { | 
|  | // In order to generate a deterministic key for a given hostname the | 
|  | // hostname is hashed with SHA-256 and the resulting digest is treated as a | 
|  | // big-endian number. The most-significant bit is cleared to ensure that | 
|  | // the resulting value is less than the order of the group and then it's | 
|  | // taken as a private key. Given the private key, the public key is | 
|  | // calculated with a group multiplication. | 
|  | SHA256_CTX sha256; | 
|  | SHA256_Init(&sha256); | 
|  | SHA256_Update(&sha256, hostname.data(), hostname.size()); | 
|  |  | 
|  | unsigned char digest[SHA256_DIGEST_LENGTH]; | 
|  | SHA256_Final(digest, &sha256); | 
|  |  | 
|  | // Ensure that the digest is less than the order of the P-256 group by | 
|  | // clearing the most-significant bit. | 
|  | digest[0] &= 0x7f; | 
|  |  | 
|  | crypto::ScopedBIGNUM k(BN_new()); | 
|  | CHECK(BN_bin2bn(digest, sizeof(digest), k.get()) != nullptr); | 
|  |  | 
|  | crypto::ScopedEC_GROUP p256( | 
|  | EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); | 
|  | CHECK(p256); | 
|  |  | 
|  | crypto::ScopedEC_KEY ecdsa_key(EC_KEY_new()); | 
|  | CHECK(ecdsa_key && EC_KEY_set_group(ecdsa_key.get(), p256.get())); | 
|  |  | 
|  | crypto::ScopedEC_POINT point(EC_POINT_new(p256.get())); | 
|  | CHECK(EC_POINT_mul(p256.get(), point.get(), k.get(), nullptr, nullptr, | 
|  | nullptr)); | 
|  |  | 
|  | EC_KEY_set_private_key(ecdsa_key.get(), k.get()); | 
|  | EC_KEY_set_public_key(ecdsa_key.get(), point.get()); | 
|  |  | 
|  | crypto::ScopedEVP_PKEY pkey(EVP_PKEY_new()); | 
|  | // EVP_PKEY_set1_EC_KEY takes a reference so no |release| here. | 
|  | EVP_PKEY_set1_EC_KEY(pkey.get(), ecdsa_key.get()); | 
|  |  | 
|  | return pkey.release(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // static | 
|  | ChannelIDSource* CryptoTestUtils::ChannelIDSourceForTesting() { | 
|  | return new TestChannelIDSource(); | 
|  | } | 
|  |  | 
|  | }  // namespace test | 
|  |  | 
|  | }  // namespace net |