|  | // Copyright (c) 2005, Google Inc. | 
|  | // All rights reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // --- | 
|  | // Author: Sanjay Ghemawat <opensource@google.com> | 
|  | // | 
|  | // A malloc that uses a per-thread cache to satisfy small malloc requests. | 
|  | // (The time for malloc/free of a small object drops from 300 ns to 50 ns.) | 
|  | // | 
|  | // See doc/tcmalloc.html for a high-level | 
|  | // description of how this malloc works. | 
|  | // | 
|  | // SYNCHRONIZATION | 
|  | //  1. The thread-specific lists are accessed without acquiring any locks. | 
|  | //     This is safe because each such list is only accessed by one thread. | 
|  | //  2. We have a lock per central free-list, and hold it while manipulating | 
|  | //     the central free list for a particular size. | 
|  | //  3. The central page allocator is protected by "pageheap_lock". | 
|  | //  4. The pagemap (which maps from page-number to descriptor), | 
|  | //     can be read without holding any locks, and written while holding | 
|  | //     the "pageheap_lock". | 
|  | //  5. To improve performance, a subset of the information one can get | 
|  | //     from the pagemap is cached in a data structure, pagemap_cache_, | 
|  | //     that atomically reads and writes its entries.  This cache can be | 
|  | //     read and written without locking. | 
|  | // | 
|  | //     This multi-threaded access to the pagemap is safe for fairly | 
|  | //     subtle reasons.  We basically assume that when an object X is | 
|  | //     allocated by thread A and deallocated by thread B, there must | 
|  | //     have been appropriate synchronization in the handoff of object | 
|  | //     X from thread A to thread B.  The same logic applies to pagemap_cache_. | 
|  | // | 
|  | // THE PAGEID-TO-SIZECLASS CACHE | 
|  | // Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache | 
|  | // returns 0 for a particular PageID then that means "no information," not that | 
|  | // the sizeclass is 0.  The cache may have stale information for pages that do | 
|  | // not hold the beginning of any free()'able object.  Staleness is eliminated | 
|  | // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and | 
|  | // do_memalign() for all other relevant pages. | 
|  | // | 
|  | // PAGEMAP | 
|  | // ------- | 
|  | // Page map contains a mapping from page id to Span. | 
|  | // | 
|  | // If Span s occupies pages [p..q], | 
|  | //      pagemap[p] == s | 
|  | //      pagemap[q] == s | 
|  | //      pagemap[p+1..q-1] are undefined | 
|  | //      pagemap[p-1] and pagemap[q+1] are defined: | 
|  | //         NULL if the corresponding page is not yet in the address space. | 
|  | //         Otherwise it points to a Span.  This span may be free | 
|  | //         or allocated.  If free, it is in one of pageheap's freelist. | 
|  | // | 
|  | // TODO: Bias reclamation to larger addresses | 
|  | // TODO: implement mallinfo/mallopt | 
|  | // TODO: Better testing | 
|  | // | 
|  | // 9/28/2003 (new page-level allocator replaces ptmalloc2): | 
|  | // * malloc/free of small objects goes from ~300 ns to ~50 ns. | 
|  | // * allocation of a reasonably complicated struct | 
|  | //   goes from about 1100 ns to about 300 ns. | 
|  |  | 
|  | #include "config.h" | 
|  | #include <gperftools/tcmalloc.h> | 
|  |  | 
|  | #include <errno.h>                      // for ENOMEM, EINVAL, errno | 
|  | #ifdef HAVE_SYS_CDEFS_H | 
|  | #include <sys/cdefs.h>                  // for __THROW | 
|  | #endif | 
|  | #if defined HAVE_STDINT_H | 
|  | #include <stdint.h> | 
|  | #elif defined HAVE_INTTYPES_H | 
|  | #include <inttypes.h> | 
|  | #else | 
|  | #include <sys/types.h> | 
|  | #endif | 
|  | #include <stddef.h>                     // for size_t, NULL | 
|  | #include <stdlib.h>                     // for getenv | 
|  | #include <string.h>                     // for strcmp, memset, strlen, etc | 
|  | #ifdef HAVE_UNISTD_H | 
|  | #include <unistd.h>                     // for getpagesize, write, etc | 
|  | #endif | 
|  | #include <algorithm>                    // for max, min | 
|  | #include <limits>                       // for numeric_limits | 
|  | #include <new>                          // for nothrow_t (ptr only), etc | 
|  | #include <vector>                       // for vector | 
|  |  | 
|  | #include <gperftools/malloc_extension.h> | 
|  | #include <gperftools/malloc_hook.h>         // for MallocHook | 
|  | #include "base/basictypes.h"            // for int64 | 
|  | #include "base/commandlineflags.h"      // for RegisterFlagValidator, etc | 
|  | #include "base/dynamic_annotations.h"   // for RunningOnValgrind | 
|  | #include "base/spinlock.h"              // for SpinLockHolder | 
|  | #include "central_freelist.h"  // for CentralFreeListPadded | 
|  | #include "common.h"            // for StackTrace, kPageShift, etc | 
|  | #include "free_list.h"         // for FL_Init | 
|  | #include "internal_logging.h"  // for ASSERT, TCMalloc_Printer, etc | 
|  | #include "malloc_hook-inl.h"       // for MallocHook::InvokeNewHook, etc | 
|  | #include "page_heap.h"         // for PageHeap, PageHeap::Stats | 
|  | #include "page_heap_allocator.h"  // for PageHeapAllocator | 
|  | #include "span.h"              // for Span, DLL_Prepend, etc | 
|  | #include "stack_trace_table.h"  // for StackTraceTable | 
|  | #include "static_vars.h"       // for Static | 
|  | #include "system-alloc.h"      // for DumpSystemAllocatorStats, etc | 
|  | #include "tcmalloc_guard.h"    // for TCMallocGuard | 
|  | #include "thread_cache.h"      // for ThreadCache | 
|  |  | 
|  | #if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS) | 
|  | # define WIN32_DO_PATCHING 1 | 
|  | #endif | 
|  |  | 
|  | // Some windows file somewhere (at least on cygwin) #define's small (!) | 
|  | // For instance, <windows.h> appears to have "#define small char". | 
|  | #undef small | 
|  |  | 
|  | using STL_NAMESPACE::max; | 
|  | using STL_NAMESPACE::min; | 
|  | using STL_NAMESPACE::numeric_limits; | 
|  | using STL_NAMESPACE::vector; | 
|  |  | 
|  | #include "libc_override.h" | 
|  |  | 
|  | // __THROW is defined in glibc (via <sys/cdefs.h>).  It means, | 
|  | // counter-intuitively, "This function will never throw an exception." | 
|  | // It's an optional optimization tool, but we may need to use it to | 
|  | // match glibc prototypes. | 
|  | #ifndef __THROW    // I guess we're not on a glibc system | 
|  | # define __THROW   // __THROW is just an optimization, so ok to make it "" | 
|  | #endif | 
|  |  | 
|  | using tcmalloc::AlignmentForSize; | 
|  | using tcmalloc::kLog; | 
|  | using tcmalloc::kCrash; | 
|  | using tcmalloc::kCrashWithStats; | 
|  | using tcmalloc::Log; | 
|  | using tcmalloc::PageHeap; | 
|  | using tcmalloc::PageHeapAllocator; | 
|  | using tcmalloc::SizeMap; | 
|  | using tcmalloc::Span; | 
|  | using tcmalloc::StackTrace; | 
|  | using tcmalloc::Static; | 
|  | using tcmalloc::ThreadCache; | 
|  |  | 
|  | // ---- Functions doing validation with an extra mark. | 
|  | static size_t ExcludeSpaceForMark(size_t size); | 
|  | static void AddRoomForMark(size_t* size); | 
|  | static void ExcludeMarkFromSize(size_t* new_size); | 
|  | static void MarkAllocatedRegion(void* ptr); | 
|  | static void ValidateAllocatedRegion(void* ptr, size_t cl); | 
|  | // ---- End validation functions. | 
|  |  | 
|  | DECLARE_int64(tcmalloc_sample_parameter); | 
|  | DECLARE_double(tcmalloc_release_rate); | 
|  |  | 
|  | // For windows, the printf we use to report large allocs is | 
|  | // potentially dangerous: it could cause a malloc that would cause an | 
|  | // infinite loop.  So by default we set the threshold to a huge number | 
|  | // on windows, so this bad situation will never trigger.  You can | 
|  | // always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you | 
|  | // want this functionality. | 
|  | #ifdef _WIN32 | 
|  | const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62; | 
|  | #else | 
|  | const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30; | 
|  | #endif | 
|  | DEFINE_int64(tcmalloc_large_alloc_report_threshold, | 
|  | EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD", | 
|  | kDefaultLargeAllocReportThreshold), | 
|  | "Allocations larger than this value cause a stack " | 
|  | "trace to be dumped to stderr.  The threshold for " | 
|  | "dumping stack traces is increased by a factor of 1.125 " | 
|  | "every time we print a message so that the threshold " | 
|  | "automatically goes up by a factor of ~1000 every 60 " | 
|  | "messages.  This bounds the amount of extra logging " | 
|  | "generated by this flag.  Default value of this flag " | 
|  | "is very large and therefore you should see no extra " | 
|  | "logging unless the flag is overridden.  Set to 0 to " | 
|  | "disable reporting entirely."); | 
|  |  | 
|  |  | 
|  | // We already declared these functions in tcmalloc.h, but we have to | 
|  | // declare them again to give them an ATTRIBUTE_SECTION: we want to | 
|  | // put all callers of MallocHook::Invoke* in this module into | 
|  | // ATTRIBUTE_SECTION(google_malloc) section, so that | 
|  | // MallocHook::GetCallerStackTrace can function accurately. | 
|  | extern "C" { | 
|  | void* tc_malloc(size_t size) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void tc_free(void* ptr) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void* tc_realloc(void* ptr, size_t size) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void* tc_calloc(size_t nmemb, size_t size) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void tc_cfree(void* ptr) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  |  | 
|  | void* tc_memalign(size_t __alignment, size_t __size) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void* tc_valloc(size_t __size) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void* tc_pvalloc(size_t __size) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  |  | 
|  | void tc_malloc_stats(void) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | int tc_mallopt(int cmd, int value) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | #ifdef HAVE_STRUCT_MALLINFO | 
|  | struct mallinfo tc_mallinfo(void) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | #endif | 
|  |  | 
|  | void* tc_new(size_t size) | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void tc_delete(void* p) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void* tc_newarray(size_t size) | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void tc_deletearray(void* p) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  |  | 
|  | // And the nothrow variants of these: | 
|  | void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | // Surprisingly, standard C++ library implementations use a | 
|  | // nothrow-delete internally.  See, eg: | 
|  | // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html | 
|  | void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  |  | 
|  | // Some non-standard extensions that we support. | 
|  |  | 
|  | // This is equivalent to | 
|  | //    OS X: malloc_size() | 
|  | //    glibc: malloc_usable_size() | 
|  | //    Windows: _msize() | 
|  | size_t tc_malloc_size(void* p) __THROW | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  |  | 
|  | void* tc_malloc_skip_new_handler(size_t size) | 
|  | ATTRIBUTE_SECTION(google_malloc); | 
|  | }  // extern "C" | 
|  |  | 
|  |  | 
|  | // ----------------------- IMPLEMENTATION ------------------------------- | 
|  |  | 
|  | static int tc_new_mode = 0;  // See tc_set_new_mode(). | 
|  |  | 
|  | // Routines such as free() and realloc() catch some erroneous pointers | 
|  | // passed to them, and invoke the below when they do.  (An erroneous pointer | 
|  | // won't be caught if it's within a valid span or a stale span for which | 
|  | // the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing | 
|  | // required) kind of exception handling for these routines. | 
|  | namespace { | 
|  | void InvalidFree(void* ptr) { | 
|  | Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr); | 
|  | } | 
|  |  | 
|  | size_t InvalidGetSizeForRealloc(const void* old_ptr) { | 
|  | Log(kCrash, __FILE__, __LINE__, | 
|  | "Attempt to realloc invalid pointer", old_ptr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t InvalidGetAllocatedSize(const void* ptr) { | 
|  | Log(kCrash, __FILE__, __LINE__, | 
|  | "Attempt to get the size of an invalid pointer", ptr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // For security reasons, we want to limit the size of allocations. | 
|  | // See crbug.com/169327. | 
|  | inline bool IsAllocSizePermitted(size_t alloc_size) { | 
|  | // Never allow an allocation larger than what can be indexed via an int. | 
|  | // Remove kPageSize to account for various rounding, padding and to have a | 
|  | // small margin. | 
|  | return alloc_size <= ((std::numeric_limits<int>::max)() - kPageSize); | 
|  | } | 
|  |  | 
|  | }  // unnamed namespace | 
|  |  | 
|  | // Extract interesting stats | 
|  | struct TCMallocStats { | 
|  | uint64_t thread_bytes;      // Bytes in thread caches | 
|  | uint64_t central_bytes;     // Bytes in central cache | 
|  | uint64_t transfer_bytes;    // Bytes in central transfer cache | 
|  | uint64_t metadata_bytes;    // Bytes alloced for metadata | 
|  | uint64_t metadata_unmapped_bytes;    // Address space reserved for metadata | 
|  | // but is not committed. | 
|  | PageHeap::Stats pageheap;   // Stats from page heap | 
|  | }; | 
|  |  | 
|  | // Get stats into "r".  Also get per-size-class counts if class_count != NULL | 
|  | static void ExtractStats(TCMallocStats* r, uint64_t* class_count, | 
|  | PageHeap::SmallSpanStats* small_spans, | 
|  | PageHeap::LargeSpanStats* large_spans) { | 
|  | r->central_bytes = 0; | 
|  | r->transfer_bytes = 0; | 
|  | for (int cl = 0; cl < kNumClasses; ++cl) { | 
|  | const int length = Static::central_cache()[cl].length(); | 
|  | const int tc_length = Static::central_cache()[cl].tc_length(); | 
|  | const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes(); | 
|  | const size_t size = static_cast<uint64_t>( | 
|  | Static::sizemap()->ByteSizeForClass(cl)); | 
|  | r->central_bytes += (size * length) + cache_overhead; | 
|  | r->transfer_bytes += (size * tc_length); | 
|  | if (class_count) class_count[cl] = length + tc_length; | 
|  | } | 
|  |  | 
|  | // Add stats from per-thread heaps | 
|  | r->thread_bytes = 0; | 
|  | { // scope | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | ThreadCache::GetThreadStats(&r->thread_bytes, class_count); | 
|  | r->metadata_bytes = tcmalloc::metadata_system_bytes(); | 
|  | r->metadata_unmapped_bytes = tcmalloc::metadata_unmapped_bytes(); | 
|  | r->pageheap = Static::pageheap()->stats(); | 
|  | if (small_spans != NULL) { | 
|  | Static::pageheap()->GetSmallSpanStats(small_spans); | 
|  | } | 
|  | if (large_spans != NULL) { | 
|  | Static::pageheap()->GetLargeSpanStats(large_spans); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static double PagesToMiB(uint64_t pages) { | 
|  | return (pages << kPageShift) / 1048576.0; | 
|  | } | 
|  |  | 
|  | // WRITE stats to "out" | 
|  | static void DumpStats(TCMalloc_Printer* out, int level) { | 
|  | TCMallocStats stats; | 
|  | uint64_t class_count[kNumClasses]; | 
|  | PageHeap::SmallSpanStats small; | 
|  | PageHeap::LargeSpanStats large; | 
|  | if (level >= 2) { | 
|  | ExtractStats(&stats, class_count, &small, &large); | 
|  | } else { | 
|  | ExtractStats(&stats, NULL, NULL, NULL); | 
|  | } | 
|  |  | 
|  | static const double MiB = 1048576.0; | 
|  |  | 
|  | const uint64_t physical_memory_used_by_metadata = | 
|  | stats.metadata_bytes - stats.metadata_unmapped_bytes; | 
|  | const uint64_t unmapped_bytes = | 
|  | stats.pageheap.unmapped_bytes + stats.metadata_unmapped_bytes; | 
|  |  | 
|  | const uint64_t virtual_memory_used = (stats.pageheap.system_bytes | 
|  | + stats.metadata_bytes); | 
|  | const uint64_t physical_memory_used = virtual_memory_used - unmapped_bytes; | 
|  | const uint64_t bytes_in_use_by_app = (physical_memory_used | 
|  | - physical_memory_used_by_metadata | 
|  | - stats.pageheap.free_bytes | 
|  | - stats.central_bytes | 
|  | - stats.transfer_bytes | 
|  | - stats.thread_bytes); | 
|  |  | 
|  | out->printf( | 
|  | "WASTE:   %7.1f MiB bytes in use\n" | 
|  | "WASTE: + %7.1f MiB committed but not used\n" | 
|  | "WASTE:   ------------\n" | 
|  | "WASTE: = %7.1f MiB bytes committed\n" | 
|  | "WASTE: committed/used ratio of %f\n", | 
|  | bytes_in_use_by_app / MiB, | 
|  | (stats.pageheap.committed_bytes - bytes_in_use_by_app) / MiB, | 
|  | stats.pageheap.committed_bytes / MiB, | 
|  | stats.pageheap.committed_bytes / static_cast<double>(bytes_in_use_by_app) | 
|  | ); | 
|  | #ifdef TCMALLOC_SMALL_BUT_SLOW | 
|  | out->printf( | 
|  | "NOTE:  SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n"); | 
|  | #endif | 
|  | out->printf( | 
|  | "------------------------------------------------\n" | 
|  | "MALLOC:   %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n" | 
|  | "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n" | 
|  | "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n" | 
|  | "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n" | 
|  | "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n" | 
|  | "MALLOC:   ------------\n" | 
|  | "MALLOC: = %12" PRIu64 " (%7.1f MiB) Bytes committed\n" | 
|  | "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n" | 
|  | "MALLOC:   ------------\n" | 
|  | "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n" | 
|  | "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n" | 
|  | "MALLOC:   ------------\n" | 
|  | "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n" | 
|  | "MALLOC:\n" | 
|  | "MALLOC:   %12" PRIu64 "              Spans in use\n" | 
|  | "MALLOC:   %12" PRIu64 "              Thread heaps in use\n" | 
|  | "MALLOC:   %12" PRIu64 "              Tcmalloc page size\n" | 
|  | "------------------------------------------------\n" | 
|  | "Call ReleaseFreeMemory() to release freelist memory to the OS" | 
|  | " (via madvise()).\n" | 
|  | "Bytes released to the OS take up virtual address space" | 
|  | " but no physical memory.\n", | 
|  | bytes_in_use_by_app, bytes_in_use_by_app / MiB, | 
|  | stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB, | 
|  | stats.central_bytes, stats.central_bytes / MiB, | 
|  | stats.transfer_bytes, stats.transfer_bytes / MiB, | 
|  | stats.thread_bytes, stats.thread_bytes / MiB, | 
|  | stats.pageheap.committed_bytes, stats.pageheap.committed_bytes / MiB, | 
|  | physical_memory_used_by_metadata , physical_memory_used_by_metadata / MiB, | 
|  | physical_memory_used, physical_memory_used / MiB, | 
|  | unmapped_bytes, unmapped_bytes / MiB, | 
|  | virtual_memory_used, virtual_memory_used / MiB, | 
|  | uint64_t(Static::span_allocator()->inuse()), | 
|  | uint64_t(ThreadCache::HeapsInUse()), | 
|  | uint64_t(kPageSize)); | 
|  |  | 
|  | if (level >= 2) { | 
|  | out->printf("------------------------------------------------\n"); | 
|  | out->printf("Size class breakdown\n"); | 
|  | out->printf("------------------------------------------------\n"); | 
|  | uint64_t cumulative = 0; | 
|  | for (int cl = 0; cl < kNumClasses; ++cl) { | 
|  | if (class_count[cl] > 0) { | 
|  | uint64_t class_bytes = | 
|  | class_count[cl] * Static::sizemap()->ByteSizeForClass(cl); | 
|  | cumulative += class_bytes; | 
|  | out->printf("class %3d [ %8" PRIuS " bytes ] : " | 
|  | "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n", | 
|  | cl, Static::sizemap()->ByteSizeForClass(cl), | 
|  | class_count[cl], | 
|  | class_bytes / MiB, | 
|  | cumulative / MiB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // append page heap info | 
|  | int nonempty_sizes = 0; | 
|  | for (int s = 0; s < kMaxPages; s++) { | 
|  | if (small.normal_length[s] + small.returned_length[s] > 0) { | 
|  | nonempty_sizes++; | 
|  | } | 
|  | } | 
|  | out->printf("------------------------------------------------\n"); | 
|  | out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n", | 
|  | nonempty_sizes, stats.pageheap.free_bytes / MiB, | 
|  | stats.pageheap.unmapped_bytes / MiB); | 
|  | out->printf("------------------------------------------------\n"); | 
|  | uint64_t total_normal = 0; | 
|  | uint64_t total_returned = 0; | 
|  | for (int s = 0; s < kMaxPages; s++) { | 
|  | const int n_length = small.normal_length[s]; | 
|  | const int r_length = small.returned_length[s]; | 
|  | if (n_length + r_length > 0) { | 
|  | uint64_t n_pages = s * n_length; | 
|  | uint64_t r_pages = s * r_length; | 
|  | total_normal += n_pages; | 
|  | total_returned += r_pages; | 
|  | out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum" | 
|  | "; unmapped: %6.1f MiB; %6.1f MiB cum\n", | 
|  | s, | 
|  | (n_length + r_length), | 
|  | PagesToMiB(n_pages + r_pages), | 
|  | PagesToMiB(total_normal + total_returned), | 
|  | PagesToMiB(r_pages), | 
|  | PagesToMiB(total_returned)); | 
|  | } | 
|  | } | 
|  |  | 
|  | total_normal += large.normal_pages; | 
|  | total_returned += large.returned_pages; | 
|  | out->printf(">255   large * %6u spans ~ %6.1f MiB; %6.1f MiB cum" | 
|  | "; unmapped: %6.1f MiB; %6.1f MiB cum\n", | 
|  | static_cast<unsigned int>(large.spans), | 
|  | PagesToMiB(large.normal_pages + large.returned_pages), | 
|  | PagesToMiB(total_normal + total_returned), | 
|  | PagesToMiB(large.returned_pages), | 
|  | PagesToMiB(total_returned)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void PrintStats(int level) { | 
|  | const int kBufferSize = 16 << 10; | 
|  | char* buffer = new char[kBufferSize]; | 
|  | TCMalloc_Printer printer(buffer, kBufferSize); | 
|  | DumpStats(&printer, level); | 
|  | write(STDERR_FILENO, buffer, strlen(buffer)); | 
|  | delete[] buffer; | 
|  | } | 
|  |  | 
|  | static void** DumpHeapGrowthStackTraces() { | 
|  | // Count how much space we need | 
|  | int needed_slots = 0; | 
|  | { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | for (StackTrace* t = Static::growth_stacks(); | 
|  | t != NULL; | 
|  | t = reinterpret_cast<StackTrace*>( | 
|  | t->stack[tcmalloc::kMaxStackDepth-1])) { | 
|  | needed_slots += 3 + t->depth; | 
|  | } | 
|  | needed_slots += 100;            // Slop in case list grows | 
|  | needed_slots += needed_slots/8; // An extra 12.5% slop | 
|  | } | 
|  |  | 
|  | void** result = new void*[needed_slots]; | 
|  | if (result == NULL) { | 
|  | Log(kLog, __FILE__, __LINE__, | 
|  | "tcmalloc: allocation failed for stack trace slots", | 
|  | needed_slots * sizeof(*result)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | int used_slots = 0; | 
|  | for (StackTrace* t = Static::growth_stacks(); | 
|  | t != NULL; | 
|  | t = reinterpret_cast<StackTrace*>( | 
|  | t->stack[tcmalloc::kMaxStackDepth-1])) { | 
|  | ASSERT(used_slots < needed_slots);  // Need to leave room for terminator | 
|  | if (used_slots + 3 + t->depth >= needed_slots) { | 
|  | // No more room | 
|  | break; | 
|  | } | 
|  |  | 
|  | result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1)); | 
|  | result[used_slots+1] = reinterpret_cast<void*>(t->size); | 
|  | result[used_slots+2] = reinterpret_cast<void*>(t->depth); | 
|  | for (int d = 0; d < t->depth; d++) { | 
|  | result[used_slots+3+d] = t->stack[d]; | 
|  | } | 
|  | used_slots += 3 + t->depth; | 
|  | } | 
|  | result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) { | 
|  | PageID page = 1;  // Some code may assume that page==0 is never used | 
|  | bool done = false; | 
|  | while (!done) { | 
|  | // Accumulate a small number of ranges in a local buffer | 
|  | static const int kNumRanges = 16; | 
|  | static base::MallocRange ranges[kNumRanges]; | 
|  | int n = 0; | 
|  | { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | while (n < kNumRanges) { | 
|  | if (!Static::pageheap()->GetNextRange(page, &ranges[n])) { | 
|  | done = true; | 
|  | break; | 
|  | } else { | 
|  | uintptr_t limit = ranges[n].address + ranges[n].length; | 
|  | page = (limit + kPageSize - 1) >> kPageShift; | 
|  | n++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < n; i++) { | 
|  | (*func)(arg, &ranges[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // TCMalloc's support for extra malloc interfaces | 
|  | class TCMallocImplementation : public MallocExtension { | 
|  | private: | 
|  | // ReleaseToSystem() might release more than the requested bytes because | 
|  | // the page heap releases at the span granularity, and spans are of wildly | 
|  | // different sizes.  This member keeps track of the extra bytes bytes | 
|  | // released so that the app can periodically call ReleaseToSystem() to | 
|  | // release memory at a constant rate. | 
|  | // NOTE: Protected by Static::pageheap_lock(). | 
|  | size_t extra_bytes_released_; | 
|  |  | 
|  | public: | 
|  | TCMallocImplementation() | 
|  | : extra_bytes_released_(0) { | 
|  | } | 
|  |  | 
|  | virtual void GetStats(char* buffer, int buffer_length) { | 
|  | ASSERT(buffer_length > 0); | 
|  | TCMalloc_Printer printer(buffer, buffer_length); | 
|  |  | 
|  | // Print level one stats unless lots of space is available | 
|  | if (buffer_length < 10000) { | 
|  | DumpStats(&printer, 1); | 
|  | } else { | 
|  | DumpStats(&printer, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We may print an extra, tcmalloc-specific warning message here. | 
|  | virtual void GetHeapSample(MallocExtensionWriter* writer) { | 
|  | if (FLAGS_tcmalloc_sample_parameter == 0) { | 
|  | const char* const kWarningMsg = | 
|  | "%warn\n" | 
|  | "%warn This heap profile does not have any data in it, because\n" | 
|  | "%warn the application was run with heap sampling turned off.\n" | 
|  | "%warn To get useful data from GetHeapSample(), you must\n" | 
|  | "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n" | 
|  | "%warn a positive sampling period, such as 524288.\n" | 
|  | "%warn\n"; | 
|  | writer->append(kWarningMsg, strlen(kWarningMsg)); | 
|  | } | 
|  | MallocExtension::GetHeapSample(writer); | 
|  | } | 
|  |  | 
|  | virtual void** ReadStackTraces(int* sample_period) { | 
|  | tcmalloc::StackTraceTable table; | 
|  | { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | Span* sampled = Static::sampled_objects(); | 
|  | for (Span* s = sampled->next; s != sampled; s = s->next) { | 
|  | table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects)); | 
|  | } | 
|  | } | 
|  | *sample_period = ThreadCache::GetCache()->GetSamplePeriod(); | 
|  | return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock | 
|  | } | 
|  |  | 
|  | virtual void** ReadHeapGrowthStackTraces() { | 
|  | return DumpHeapGrowthStackTraces(); | 
|  | } | 
|  |  | 
|  | virtual void Ranges(void* arg, RangeFunction func) { | 
|  | IterateOverRanges(arg, func); | 
|  | } | 
|  |  | 
|  | virtual bool GetNumericProperty(const char* name, size_t* value) { | 
|  | ASSERT(name != NULL); | 
|  |  | 
|  | if (strcmp(name, "generic.current_allocated_bytes") == 0) { | 
|  | TCMallocStats stats; | 
|  | ExtractStats(&stats, NULL, NULL, NULL); | 
|  | *value = stats.pageheap.system_bytes | 
|  | - stats.thread_bytes | 
|  | - stats.central_bytes | 
|  | - stats.transfer_bytes | 
|  | - stats.pageheap.free_bytes | 
|  | - stats.pageheap.unmapped_bytes; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (strcmp(name, "generic.heap_size") == 0) { | 
|  | TCMallocStats stats; | 
|  | ExtractStats(&stats, NULL, NULL, NULL); | 
|  | *value = stats.pageheap.system_bytes; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (strcmp(name, "tcmalloc.slack_bytes") == 0) { | 
|  | // Kept for backwards compatibility.  Now defined externally as: | 
|  | //    pageheap_free_bytes + pageheap_unmapped_bytes. | 
|  | SpinLockHolder l(Static::pageheap_lock()); | 
|  | PageHeap::Stats stats = Static::pageheap()->stats(); | 
|  | *value = stats.free_bytes + stats.unmapped_bytes; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) { | 
|  | SpinLockHolder l(Static::pageheap_lock()); | 
|  | *value = Static::pageheap()->stats().free_bytes; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) { | 
|  | SpinLockHolder l(Static::pageheap_lock()); | 
|  | *value = Static::pageheap()->stats().unmapped_bytes; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { | 
|  | SpinLockHolder l(Static::pageheap_lock()); | 
|  | *value = ThreadCache::overall_thread_cache_size(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) { | 
|  | TCMallocStats stats; | 
|  | ExtractStats(&stats, NULL, NULL, NULL); | 
|  | *value = stats.thread_bytes; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | virtual bool SetNumericProperty(const char* name, size_t value) { | 
|  | ASSERT(name != NULL); | 
|  |  | 
|  | if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { | 
|  | SpinLockHolder l(Static::pageheap_lock()); | 
|  | ThreadCache::set_overall_thread_cache_size(value); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | virtual void MarkThreadIdle() { | 
|  | ThreadCache::BecomeIdle(); | 
|  | } | 
|  |  | 
|  | virtual void MarkThreadBusy();  // Implemented below | 
|  |  | 
|  | virtual SysAllocator* GetSystemAllocator() { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | return sys_alloc; | 
|  | } | 
|  |  | 
|  | virtual void SetSystemAllocator(SysAllocator* alloc) { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | sys_alloc = alloc; | 
|  | } | 
|  |  | 
|  | virtual void ReleaseToSystem(size_t num_bytes) { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | if (num_bytes <= extra_bytes_released_) { | 
|  | // We released too much on a prior call, so don't release any | 
|  | // more this time. | 
|  | extra_bytes_released_ = extra_bytes_released_ - num_bytes; | 
|  | return; | 
|  | } | 
|  | num_bytes = num_bytes - extra_bytes_released_; | 
|  | // num_bytes might be less than one page.  If we pass zero to | 
|  | // ReleaseAtLeastNPages, it won't do anything, so we release a whole | 
|  | // page now and let extra_bytes_released_ smooth it out over time. | 
|  | Length num_pages = max<Length>(num_bytes >> kPageShift, 1); | 
|  | size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages( | 
|  | num_pages) << kPageShift; | 
|  | if (bytes_released > num_bytes) { | 
|  | extra_bytes_released_ = bytes_released - num_bytes; | 
|  | } else { | 
|  | // The PageHeap wasn't able to release num_bytes.  Don't try to | 
|  | // compensate with a big release next time.  Specifically, | 
|  | // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX). | 
|  | extra_bytes_released_ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual void SetMemoryReleaseRate(double rate) { | 
|  | FLAGS_tcmalloc_release_rate = rate; | 
|  | } | 
|  |  | 
|  | virtual double GetMemoryReleaseRate() { | 
|  | return FLAGS_tcmalloc_release_rate; | 
|  | } | 
|  | virtual size_t GetEstimatedAllocatedSize(size_t size) { | 
|  | if (size <= kMaxSize) { | 
|  | const size_t cl = Static::sizemap()->SizeClass(size); | 
|  | const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl); | 
|  | return alloc_size; | 
|  | } else { | 
|  | return tcmalloc::pages(size) << kPageShift; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This just calls GetSizeWithCallback, but because that's in an | 
|  | // unnamed namespace, we need to move the definition below it in the | 
|  | // file. | 
|  | virtual size_t GetAllocatedSize(const void* ptr); | 
|  |  | 
|  | // This duplicates some of the logic in GetSizeWithCallback, but is | 
|  | // faster.  This is important on OS X, where this function is called | 
|  | // on every allocation operation. | 
|  | virtual Ownership GetOwnership(const void* ptr) { | 
|  | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | 
|  | // The rest of tcmalloc assumes that all allocated pointers use at | 
|  | // most kAddressBits bits.  If ptr doesn't, then it definitely | 
|  | // wasn't alloacted by tcmalloc. | 
|  | if ((p >> (kAddressBits - kPageShift)) > 0) { | 
|  | return kNotOwned; | 
|  | } | 
|  | size_t cl = Static::pageheap()->GetSizeClassIfCached(p); | 
|  | if (cl != 0) { | 
|  | return kOwned; | 
|  | } | 
|  | const Span *span = Static::pageheap()->GetDescriptor(p); | 
|  | return span ? kOwned : kNotOwned; | 
|  | } | 
|  |  | 
|  | virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) { | 
|  | static const char* kCentralCacheType = "tcmalloc.central"; | 
|  | static const char* kTransferCacheType = "tcmalloc.transfer"; | 
|  | static const char* kThreadCacheType = "tcmalloc.thread"; | 
|  | static const char* kPageHeapType = "tcmalloc.page"; | 
|  | static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped"; | 
|  | static const char* kLargeSpanType = "tcmalloc.large"; | 
|  | static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped"; | 
|  |  | 
|  | v->clear(); | 
|  |  | 
|  | // central class information | 
|  | int64 prev_class_size = 0; | 
|  | for (int cl = 1; cl < kNumClasses; ++cl) { | 
|  | size_t class_size = Static::sizemap()->ByteSizeForClass(cl); | 
|  | MallocExtension::FreeListInfo i; | 
|  | i.min_object_size = prev_class_size + 1; | 
|  | i.max_object_size = class_size; | 
|  | i.total_bytes_free = | 
|  | Static::central_cache()[cl].length() * class_size; | 
|  | i.type = kCentralCacheType; | 
|  | v->push_back(i); | 
|  |  | 
|  | // transfer cache | 
|  | i.total_bytes_free = | 
|  | Static::central_cache()[cl].tc_length() * class_size; | 
|  | i.type = kTransferCacheType; | 
|  | v->push_back(i); | 
|  |  | 
|  | prev_class_size = Static::sizemap()->ByteSizeForClass(cl); | 
|  | } | 
|  |  | 
|  | // Add stats from per-thread heaps | 
|  | uint64_t class_count[kNumClasses]; | 
|  | memset(class_count, 0, sizeof(class_count)); | 
|  | { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | uint64_t thread_bytes = 0; | 
|  | ThreadCache::GetThreadStats(&thread_bytes, class_count); | 
|  | } | 
|  |  | 
|  | prev_class_size = 0; | 
|  | for (int cl = 1; cl < kNumClasses; ++cl) { | 
|  | MallocExtension::FreeListInfo i; | 
|  | i.min_object_size = prev_class_size + 1; | 
|  | i.max_object_size = Static::sizemap()->ByteSizeForClass(cl); | 
|  | i.total_bytes_free = | 
|  | class_count[cl] * Static::sizemap()->ByteSizeForClass(cl); | 
|  | i.type = kThreadCacheType; | 
|  | v->push_back(i); | 
|  | } | 
|  |  | 
|  | // append page heap info | 
|  | PageHeap::SmallSpanStats small; | 
|  | PageHeap::LargeSpanStats large; | 
|  | { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | Static::pageheap()->GetSmallSpanStats(&small); | 
|  | Static::pageheap()->GetLargeSpanStats(&large); | 
|  | } | 
|  |  | 
|  | // large spans: mapped | 
|  | MallocExtension::FreeListInfo span_info; | 
|  | span_info.type = kLargeSpanType; | 
|  | span_info.max_object_size = (numeric_limits<size_t>::max)(); | 
|  | span_info.min_object_size = kMaxPages << kPageShift; | 
|  | span_info.total_bytes_free = large.normal_pages << kPageShift; | 
|  | v->push_back(span_info); | 
|  |  | 
|  | // large spans: unmapped | 
|  | span_info.type = kLargeUnmappedSpanType; | 
|  | span_info.total_bytes_free = large.returned_pages << kPageShift; | 
|  | v->push_back(span_info); | 
|  |  | 
|  | // small spans | 
|  | for (int s = 1; s < kMaxPages; s++) { | 
|  | MallocExtension::FreeListInfo i; | 
|  | i.max_object_size = (s << kPageShift); | 
|  | i.min_object_size = ((s - 1) << kPageShift); | 
|  |  | 
|  | i.type = kPageHeapType; | 
|  | i.total_bytes_free = (s << kPageShift) * small.normal_length[s]; | 
|  | v->push_back(i); | 
|  |  | 
|  | i.type = kPageHeapUnmappedType; | 
|  | i.total_bytes_free = (s << kPageShift) * small.returned_length[s]; | 
|  | v->push_back(i); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // The constructor allocates an object to ensure that initialization | 
|  | // runs before main(), and therefore we do not have a chance to become | 
|  | // multi-threaded before initialization.  We also create the TSD key | 
|  | // here.  Presumably by the time this constructor runs, glibc is in | 
|  | // good enough shape to handle pthread_key_create(). | 
|  | // | 
|  | // The constructor also takes the opportunity to tell STL to use | 
|  | // tcmalloc.  We want to do this early, before construct time, so | 
|  | // all user STL allocations go through tcmalloc (which works really | 
|  | // well for STL). | 
|  | // | 
|  | // The destructor prints stats when the program exits. | 
|  | static int tcmallocguard_refcount = 0;  // no lock needed: runs before main() | 
|  | TCMallocGuard::TCMallocGuard() { | 
|  | if (tcmallocguard_refcount++ == 0) { | 
|  | #ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS | 
|  | // Check whether the kernel also supports TLS (needs to happen at runtime) | 
|  | tcmalloc::CheckIfKernelSupportsTLS(); | 
|  | #endif | 
|  | ReplaceSystemAlloc();    // defined in libc_override_*.h | 
|  | tc_free(tc_malloc(1)); | 
|  | ThreadCache::InitTSD(); | 
|  | tc_free(tc_malloc(1)); | 
|  | // Either we, or debugallocation.cc, or valgrind will control memory | 
|  | // management.  We register our extension if we're the winner. | 
|  | #ifdef TCMALLOC_USING_DEBUGALLOCATION | 
|  | // Let debugallocation register its extension. | 
|  | #else | 
|  | if (RunningOnValgrind()) { | 
|  | // Let Valgrind uses its own malloc (so don't register our extension). | 
|  | } else { | 
|  | MallocExtension::Register(new TCMallocImplementation); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | TCMallocGuard::~TCMallocGuard() { | 
|  | if (--tcmallocguard_refcount == 0) { | 
|  | const char* env = getenv("MALLOCSTATS"); | 
|  | if (env != NULL) { | 
|  | int level = atoi(env); | 
|  | if (level < 1) level = 1; | 
|  | PrintStats(level); | 
|  | } | 
|  | } | 
|  | } | 
|  | #ifndef WIN32_OVERRIDE_ALLOCATORS | 
|  | static TCMallocGuard module_enter_exit_hook; | 
|  | #endif | 
|  |  | 
|  | //------------------------------------------------------------------- | 
|  | // Helpers for the exported routines below | 
|  | //------------------------------------------------------------------- | 
|  |  | 
|  | static inline bool CheckCachedSizeClass(void *ptr) { | 
|  | PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | 
|  | size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p); | 
|  | return cached_value == 0 || | 
|  | cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass; | 
|  | } | 
|  |  | 
|  | static inline void* CheckMallocResult(void *result) { | 
|  | ASSERT(result == NULL || CheckCachedSizeClass(result)); | 
|  | MarkAllocatedRegion(result); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static inline void* SpanToMallocResult(Span *span) { | 
|  | Static::pageheap()->CacheSizeClass(span->start, 0); | 
|  | return | 
|  | CheckMallocResult(reinterpret_cast<void*>(span->start << kPageShift)); | 
|  | } | 
|  |  | 
|  | static void* DoSampledAllocation(size_t size) { | 
|  | // Grab the stack trace outside the heap lock | 
|  | StackTrace tmp; | 
|  | tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1); | 
|  | tmp.size = size; | 
|  |  | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | // Allocate span | 
|  | Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size)); | 
|  | if (span == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Allocate stack trace | 
|  | StackTrace *stack = Static::stacktrace_allocator()->New(); | 
|  | if (stack == NULL) { | 
|  | // Sampling failed because of lack of memory | 
|  | return span; | 
|  | } | 
|  | *stack = tmp; | 
|  | span->sample = 1; | 
|  | span->objects = stack; | 
|  | tcmalloc::DLL_Prepend(Static::sampled_objects(), span); | 
|  |  | 
|  | return SpanToMallocResult(span); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Copy of FLAGS_tcmalloc_large_alloc_report_threshold with | 
|  | // automatic increases factored in. | 
|  | static int64_t large_alloc_threshold = | 
|  | (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold | 
|  | ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold); | 
|  |  | 
|  | static void ReportLargeAlloc(Length num_pages, void* result) { | 
|  | StackTrace stack; | 
|  | stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1); | 
|  |  | 
|  | static const int N = 1000; | 
|  | char buffer[N]; | 
|  | TCMalloc_Printer printer(buffer, N); | 
|  | printer.printf("tcmalloc: large alloc %" PRIu64 " bytes == %p @ ", | 
|  | static_cast<uint64>(num_pages) << kPageShift, | 
|  | result); | 
|  | for (int i = 0; i < stack.depth; i++) { | 
|  | printer.printf(" %p", stack.stack[i]); | 
|  | } | 
|  | printer.printf("\n"); | 
|  | write(STDERR_FILENO, buffer, strlen(buffer)); | 
|  | } | 
|  |  | 
|  | inline void* cpp_alloc(size_t size, bool nothrow); | 
|  | inline void* do_malloc(size_t size); | 
|  |  | 
|  | // TODO(willchan): Investigate whether or not inlining this much is harmful to | 
|  | // performance. | 
|  | // This is equivalent to do_malloc() except when tc_new_mode is set to true. | 
|  | // Otherwise, it will run the std::new_handler if set. | 
|  | inline void* do_malloc_or_cpp_alloc(size_t size) { | 
|  | return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size); | 
|  | } | 
|  |  | 
|  | void* cpp_memalign(size_t align, size_t size); | 
|  | void* do_memalign(size_t align, size_t size); | 
|  |  | 
|  | inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) { | 
|  | return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size); | 
|  | } | 
|  |  | 
|  | // Must be called with the page lock held. | 
|  | inline bool should_report_large(Length num_pages) { | 
|  | const int64 threshold = large_alloc_threshold; | 
|  | if (threshold > 0 && num_pages >= (threshold >> kPageShift)) { | 
|  | // Increase the threshold by 1/8 every time we generate a report. | 
|  | // We cap the threshold at 8GiB to avoid overflow problems. | 
|  | large_alloc_threshold = (threshold + threshold/8 < 8ll<<30 | 
|  | ? threshold + threshold/8 : 8ll<<30); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Helper for do_malloc(). | 
|  | inline void* do_malloc_pages(ThreadCache* heap, size_t size) { | 
|  | void* result; | 
|  | bool report_large; | 
|  |  | 
|  | Length num_pages = tcmalloc::pages(size); | 
|  | size = num_pages << kPageShift; | 
|  |  | 
|  | // Chromium profiling.  Measurements in March 2013 suggest this | 
|  | // imposes a small enough runtime cost that there's no reason to | 
|  | // try to optimize it. | 
|  | heap->AddToByteAllocatedTotal(size); | 
|  |  | 
|  | if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) { | 
|  | result = DoSampledAllocation(size); | 
|  |  | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | report_large = should_report_large(num_pages); | 
|  | } else { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | Span* span = Static::pageheap()->New(num_pages); | 
|  | result = (span == NULL ? NULL : SpanToMallocResult(span)); | 
|  | report_large = should_report_large(num_pages); | 
|  | } | 
|  |  | 
|  | if (report_large) { | 
|  | ReportLargeAlloc(num_pages, result); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | inline void* do_malloc(size_t size) { | 
|  | AddRoomForMark(&size); | 
|  |  | 
|  | void* ret = NULL; | 
|  |  | 
|  | // The following call forces module initialization | 
|  | ThreadCache* heap = ThreadCache::GetCache(); | 
|  | if (size <= kMaxSize && IsAllocSizePermitted(size)) { | 
|  | size_t cl = Static::sizemap()->SizeClass(size); | 
|  | size = Static::sizemap()->class_to_size(cl); | 
|  |  | 
|  | // Chromium profiling.  Measurements in March 2013 suggest this | 
|  | // imposes a small enough runtime cost that there's no reason to | 
|  | // try to optimize it. | 
|  | heap->AddToByteAllocatedTotal(size); | 
|  |  | 
|  | if ((FLAGS_tcmalloc_sample_parameter > 0) && | 
|  | heap->SampleAllocation(size)) { | 
|  | ret = DoSampledAllocation(size); | 
|  | MarkAllocatedRegion(ret); | 
|  | } else { | 
|  | // The common case, and also the simplest.  This just pops the | 
|  | // size-appropriate freelist, after replenishing it if it's empty. | 
|  | ret = CheckMallocResult(heap->Allocate(size, cl)); | 
|  | } | 
|  | } else if (IsAllocSizePermitted(size)) { | 
|  | ret = do_malloc_pages(heap, size); | 
|  | MarkAllocatedRegion(ret); | 
|  | } | 
|  | if (ret == NULL) errno = ENOMEM; | 
|  | ASSERT(IsAllocSizePermitted(size) || ret == NULL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | inline void* do_calloc(size_t n, size_t elem_size) { | 
|  | // Overflow check | 
|  | const size_t size = n * elem_size; | 
|  | if (elem_size != 0 && size / elem_size != n) return NULL; | 
|  |  | 
|  | void* result = do_malloc_or_cpp_alloc(size); | 
|  | if (result != NULL) { | 
|  | memset(result, 0, size); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static inline ThreadCache* GetCacheIfPresent() { | 
|  | void* const p = ThreadCache::GetCacheIfPresent(); | 
|  | return reinterpret_cast<ThreadCache*>(p); | 
|  | } | 
|  |  | 
|  | // This lets you call back to a given function pointer if ptr is invalid. | 
|  | // It is used primarily by windows code which wants a specialized callback. | 
|  | inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) { | 
|  | if (ptr == NULL) return; | 
|  | if (Static::pageheap() == NULL) { | 
|  | // We called free() before malloc().  This can occur if the | 
|  | // (system) malloc() is called before tcmalloc is loaded, and then | 
|  | // free() is called after tcmalloc is loaded (and tc_free has | 
|  | // replaced free), but before the global constructor has run that | 
|  | // sets up the tcmalloc data structures. | 
|  | (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request | 
|  | return; | 
|  | } | 
|  | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | 
|  | Span* span = NULL; | 
|  | size_t cl = Static::pageheap()->GetSizeClassIfCached(p); | 
|  |  | 
|  | if (cl == 0) { | 
|  | span = Static::pageheap()->GetDescriptor(p); | 
|  | if (!span) { | 
|  | // span can be NULL because the pointer passed in is invalid | 
|  | // (not something returned by malloc or friends), or because the | 
|  | // pointer was allocated with some other allocator besides | 
|  | // tcmalloc.  The latter can happen if tcmalloc is linked in via | 
|  | // a dynamic library, but is not listed last on the link line. | 
|  | // In that case, libraries after it on the link line will | 
|  | // allocate with libc malloc, but free with tcmalloc's free. | 
|  | (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request | 
|  | return; | 
|  | } | 
|  | cl = span->sizeclass; | 
|  | Static::pageheap()->CacheSizeClass(p, cl); | 
|  | } | 
|  | if (cl == 0) { | 
|  | // Check to see if the object is in use. | 
|  | CHECK_CONDITION_PRINT(span->location == Span::IN_USE, | 
|  | "Object was not in-use"); | 
|  |  | 
|  | CHECK_CONDITION_PRINT( | 
|  | span->start << kPageShift == reinterpret_cast<uintptr_t>(ptr), | 
|  | "Pointer is not pointing to the start of a span"); | 
|  | } | 
|  | ValidateAllocatedRegion(ptr, cl); | 
|  |  | 
|  | if (cl != 0) { | 
|  | ASSERT(!Static::pageheap()->GetDescriptor(p)->sample); | 
|  | ThreadCache* heap = GetCacheIfPresent(); | 
|  | if (heap != NULL) { | 
|  | heap->Deallocate(ptr, cl); | 
|  | } else { | 
|  | // Delete directly into central cache | 
|  | tcmalloc::FL_Init(ptr); | 
|  | Static::central_cache()[cl].InsertRange(ptr, ptr, 1); | 
|  | } | 
|  | } else { | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  | ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0); | 
|  | ASSERT(span != NULL && span->start == p); | 
|  | if (span->sample) { | 
|  | StackTrace* st = reinterpret_cast<StackTrace*>(span->objects); | 
|  | tcmalloc::DLL_Remove(span); | 
|  | Static::stacktrace_allocator()->Delete(st); | 
|  | span->objects = NULL; | 
|  | } | 
|  | Static::pageheap()->Delete(span); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The default "do_free" that uses the default callback. | 
|  | inline void do_free(void* ptr) { | 
|  | return do_free_with_callback(ptr, &InvalidFree); | 
|  | } | 
|  |  | 
|  | // NOTE: some logic here is duplicated in GetOwnership (above), for | 
|  | // speed.  If you change this function, look at that one too. | 
|  | inline size_t GetSizeWithCallback(const void* ptr, | 
|  | size_t (*invalid_getsize_fn)(const void*)) { | 
|  | if (ptr == NULL) | 
|  | return 0; | 
|  | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | 
|  | size_t cl = Static::pageheap()->GetSizeClassIfCached(p); | 
|  | if (cl != 0) { | 
|  | return Static::sizemap()->ByteSizeForClass(cl); | 
|  | } else { | 
|  | const Span *span = Static::pageheap()->GetDescriptor(p); | 
|  | if (span == NULL) {  // means we do not own this memory | 
|  | return (*invalid_getsize_fn)(ptr); | 
|  | } else if (span->sizeclass != 0) { | 
|  | Static::pageheap()->CacheSizeClass(p, span->sizeclass); | 
|  | return Static::sizemap()->ByteSizeForClass(span->sizeclass); | 
|  | } else { | 
|  | return span->length << kPageShift; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // This lets you call back to a given function pointer if ptr is invalid. | 
|  | // It is used primarily by windows code which wants a specialized callback. | 
|  | inline void* do_realloc_with_callback( | 
|  | void* old_ptr, size_t new_size, | 
|  | void (*invalid_free_fn)(void*), | 
|  | size_t (*invalid_get_size_fn)(const void*)) { | 
|  | AddRoomForMark(&new_size); | 
|  | // Get the size of the old entry | 
|  | const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn); | 
|  |  | 
|  | // Reallocate if the new size is larger than the old size, | 
|  | // or if the new size is significantly smaller than the old size. | 
|  | // We do hysteresis to avoid resizing ping-pongs: | 
|  | //    . If we need to grow, grow to max(new_size, old_size * 1.X) | 
|  | //    . Don't shrink unless new_size < old_size * 0.Y | 
|  | // X and Y trade-off time for wasted space.  For now we do 1.25 and 0.5. | 
|  | const size_t min_growth = min(old_size / 4, | 
|  | (std::numeric_limits<size_t>::max)() - old_size);  // Avoid overflow. | 
|  | const size_t lower_bound_to_grow = old_size + min_growth; | 
|  | const size_t upper_bound_to_shrink = old_size / 2; | 
|  | if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) { | 
|  | // Need to reallocate. | 
|  | void* new_ptr = NULL; | 
|  |  | 
|  | if (new_size > old_size && new_size < lower_bound_to_grow) { | 
|  | new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow); | 
|  | } | 
|  | ExcludeMarkFromSize(&new_size);  // do_malloc will add space if needed. | 
|  | if (new_ptr == NULL) { | 
|  | // Either new_size is not a tiny increment, or last do_malloc failed. | 
|  | new_ptr = do_malloc_or_cpp_alloc(new_size); | 
|  | } | 
|  | if (new_ptr == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | MallocHook::InvokeNewHook(new_ptr, new_size); | 
|  | memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size)); | 
|  | MallocHook::InvokeDeleteHook(old_ptr); | 
|  | // We could use a variant of do_free() that leverages the fact | 
|  | // that we already know the sizeclass of old_ptr.  The benefit | 
|  | // would be small, so don't bother. | 
|  | do_free_with_callback(old_ptr, invalid_free_fn); | 
|  | return new_ptr; | 
|  | } else { | 
|  | // We still need to call hooks to report the updated size: | 
|  | MallocHook::InvokeDeleteHook(old_ptr); | 
|  | ExcludeMarkFromSize(&new_size); | 
|  | MallocHook::InvokeNewHook(old_ptr, new_size); | 
|  | return old_ptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | inline void* do_realloc(void* old_ptr, size_t new_size) { | 
|  | return do_realloc_with_callback(old_ptr, new_size, | 
|  | &InvalidFree, &InvalidGetSizeForRealloc); | 
|  | } | 
|  |  | 
|  | // For use by exported routines below that want specific alignments | 
|  | // | 
|  | // Note: this code can be slow for alignments > 16, and can | 
|  | // significantly fragment memory.  The expectation is that | 
|  | // memalign/posix_memalign/valloc/pvalloc will not be invoked very | 
|  | // often.  This requirement simplifies our implementation and allows | 
|  | // us to tune for expected allocation patterns. | 
|  | void* do_memalign(size_t align, size_t size) { | 
|  | ASSERT((align & (align - 1)) == 0); | 
|  | ASSERT(align > 0); | 
|  | // Marked in CheckMallocResult(), which is also inside SpanToMallocResult(). | 
|  | AddRoomForMark(&size); | 
|  | if (size + align < size) return NULL;         // Overflow | 
|  |  | 
|  | // Fall back to malloc if we would already align this memory access properly. | 
|  | if (align <= AlignmentForSize(size)) { | 
|  | void* p = do_malloc(size); | 
|  | ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | if (Static::pageheap() == NULL) ThreadCache::InitModule(); | 
|  |  | 
|  | // Allocate at least one byte to avoid boundary conditions below | 
|  | if (size == 0) size = 1; | 
|  |  | 
|  | if (size <= kMaxSize && align < kPageSize) { | 
|  | // Search through acceptable size classes looking for one with | 
|  | // enough alignment.  This depends on the fact that | 
|  | // InitSizeClasses() currently produces several size classes that | 
|  | // are aligned at powers of two.  We will waste time and space if | 
|  | // we miss in the size class array, but that is deemed acceptable | 
|  | // since memalign() should be used rarely. | 
|  | int cl = Static::sizemap()->SizeClass(size); | 
|  | while (cl < kNumClasses && | 
|  | ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) { | 
|  | cl++; | 
|  | } | 
|  | if (cl < kNumClasses) { | 
|  | ThreadCache* heap = ThreadCache::GetCache(); | 
|  | size = Static::sizemap()->class_to_size(cl); | 
|  | return CheckMallocResult(heap->Allocate(size, cl)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We will allocate directly from the page heap | 
|  | SpinLockHolder h(Static::pageheap_lock()); | 
|  |  | 
|  | if (align <= kPageSize) { | 
|  | // Any page-level allocation will be fine | 
|  | // TODO: We could put the rest of this page in the appropriate | 
|  | // TODO: cache but it does not seem worth it. | 
|  | Span* span = Static::pageheap()->New(tcmalloc::pages(size)); | 
|  | return span == NULL ? NULL : SpanToMallocResult(span); | 
|  | } | 
|  |  | 
|  | // Allocate extra pages and carve off an aligned portion | 
|  | const Length alloc = tcmalloc::pages(size + align); | 
|  | Span* span = Static::pageheap()->New(alloc); | 
|  | if (span == NULL) return NULL; | 
|  |  | 
|  | // Skip starting portion so that we end up aligned | 
|  | Length skip = 0; | 
|  | while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) { | 
|  | skip++; | 
|  | } | 
|  | ASSERT(skip < alloc); | 
|  | if (skip > 0) { | 
|  | Span* rest = Static::pageheap()->Split(span, skip); | 
|  | Static::pageheap()->Delete(span); | 
|  | span = rest; | 
|  | } | 
|  |  | 
|  | // Skip trailing portion that we do not need to return | 
|  | const Length needed = tcmalloc::pages(size); | 
|  | ASSERT(span->length >= needed); | 
|  | if (span->length > needed) { | 
|  | Span* trailer = Static::pageheap()->Split(span, needed); | 
|  | Static::pageheap()->Delete(trailer); | 
|  | } | 
|  | return SpanToMallocResult(span); | 
|  | } | 
|  |  | 
|  | // Helpers for use by exported routines below: | 
|  |  | 
|  | inline void do_malloc_stats() { | 
|  | PrintStats(1); | 
|  | } | 
|  |  | 
|  | inline int do_mallopt(int cmd, int value) { | 
|  | return 1;     // Indicates error | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_STRUCT_MALLINFO | 
|  | inline struct mallinfo do_mallinfo() { | 
|  | TCMallocStats stats; | 
|  | ExtractStats(&stats, NULL, NULL, NULL); | 
|  |  | 
|  | // Just some of the fields are filled in. | 
|  | struct mallinfo info; | 
|  | memset(&info, 0, sizeof(info)); | 
|  |  | 
|  | // Unfortunately, the struct contains "int" field, so some of the | 
|  | // size values will be truncated. | 
|  | info.arena     = static_cast<int>(stats.pageheap.system_bytes); | 
|  | info.fsmblks   = static_cast<int>(stats.thread_bytes | 
|  | + stats.central_bytes | 
|  | + stats.transfer_bytes); | 
|  | info.fordblks  = static_cast<int>(stats.pageheap.free_bytes + | 
|  | stats.pageheap.unmapped_bytes); | 
|  | info.uordblks  = static_cast<int>(stats.pageheap.system_bytes | 
|  | - stats.thread_bytes | 
|  | - stats.central_bytes | 
|  | - stats.transfer_bytes | 
|  | - stats.pageheap.free_bytes | 
|  | - stats.pageheap.unmapped_bytes); | 
|  |  | 
|  | return info; | 
|  | } | 
|  | #endif  // HAVE_STRUCT_MALLINFO | 
|  |  | 
|  | static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED); | 
|  |  | 
|  | inline void* cpp_alloc(size_t size, bool nothrow) { | 
|  | for (;;) { | 
|  | void* p = do_malloc(size); | 
|  | #ifdef PREANSINEW | 
|  | return p; | 
|  | #else | 
|  | if (p == NULL) {  // allocation failed | 
|  | // Get the current new handler.  NB: this function is not | 
|  | // thread-safe.  We make a feeble stab at making it so here, but | 
|  | // this lock only protects against tcmalloc interfering with | 
|  | // itself, not with other libraries calling set_new_handler. | 
|  | std::new_handler nh; | 
|  | { | 
|  | SpinLockHolder h(&set_new_handler_lock); | 
|  | nh = std::set_new_handler(0); | 
|  | (void) std::set_new_handler(nh); | 
|  | } | 
|  | #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) | 
|  | if (nh) { | 
|  | // Since exceptions are disabled, we don't really know if new_handler | 
|  | // failed.  Assume it will abort if it fails. | 
|  | (*nh)(); | 
|  | continue; | 
|  | } | 
|  | return 0; | 
|  | #else | 
|  | // If no new_handler is established, the allocation failed. | 
|  | if (!nh) { | 
|  | if (nothrow) return 0; | 
|  | throw std::bad_alloc(); | 
|  | } | 
|  | // Otherwise, try the new_handler.  If it returns, retry the | 
|  | // allocation.  If it throws std::bad_alloc, fail the allocation. | 
|  | // if it throws something else, don't interfere. | 
|  | try { | 
|  | (*nh)(); | 
|  | } catch (const std::bad_alloc&) { | 
|  | if (!nothrow) throw; | 
|  | return p; | 
|  | } | 
|  | #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) | 
|  | } else {  // allocation success | 
|  | return p; | 
|  | } | 
|  | #endif  // PREANSINEW | 
|  | } | 
|  | } | 
|  |  | 
|  | void* cpp_memalign(size_t align, size_t size) { | 
|  | for (;;) { | 
|  | void* p = do_memalign(align, size); | 
|  | #ifdef PREANSINEW | 
|  | return p; | 
|  | #else | 
|  | if (p == NULL) {  // allocation failed | 
|  | // Get the current new handler.  NB: this function is not | 
|  | // thread-safe.  We make a feeble stab at making it so here, but | 
|  | // this lock only protects against tcmalloc interfering with | 
|  | // itself, not with other libraries calling set_new_handler. | 
|  | std::new_handler nh; | 
|  | { | 
|  | SpinLockHolder h(&set_new_handler_lock); | 
|  | nh = std::set_new_handler(0); | 
|  | (void) std::set_new_handler(nh); | 
|  | } | 
|  | #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) | 
|  | if (nh) { | 
|  | // Since exceptions are disabled, we don't really know if new_handler | 
|  | // failed.  Assume it will abort if it fails. | 
|  | (*nh)(); | 
|  | continue; | 
|  | } | 
|  | return 0; | 
|  | #else | 
|  | // If no new_handler is established, the allocation failed. | 
|  | if (!nh) | 
|  | return 0; | 
|  |  | 
|  | // Otherwise, try the new_handler.  If it returns, retry the | 
|  | // allocation.  If it throws std::bad_alloc, fail the allocation. | 
|  | // if it throws something else, don't interfere. | 
|  | try { | 
|  | (*nh)(); | 
|  | } catch (const std::bad_alloc&) { | 
|  | return p; | 
|  | } | 
|  | #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) | 
|  | } else {  // allocation success | 
|  | return p; | 
|  | } | 
|  | #endif  // PREANSINEW | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // end unnamed namespace | 
|  |  | 
|  | // As promised, the definition of this function, declared above. | 
|  | size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) { | 
|  | // Chromium workaround for third-party code calling tc_malloc_size(NULL), see | 
|  | // http://code.google.com/p/chromium/issues/detail?id=118087 | 
|  | // Note: this is consistent with GLIBC's implementation of | 
|  | // malloc_usable_size(NULL). | 
|  | if (ptr == NULL) | 
|  | return 0; | 
|  | ASSERT(TCMallocImplementation::GetOwnership(ptr) | 
|  | != TCMallocImplementation::kNotOwned); | 
|  | return ExcludeSpaceForMark( | 
|  | GetSizeWithCallback(ptr, &InvalidGetAllocatedSize)); | 
|  | } | 
|  |  | 
|  | void TCMallocImplementation::MarkThreadBusy() { | 
|  | // Allocate to force the creation of a thread cache, but avoid | 
|  | // invoking any hooks. | 
|  | do_free(do_malloc(0)); | 
|  | } | 
|  |  | 
|  | //------------------------------------------------------------------- | 
|  | // Exported routines | 
|  | //------------------------------------------------------------------- | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL const char* tc_version( | 
|  | int* major, int* minor, const char** patch) __THROW { | 
|  | if (major) *major = TC_VERSION_MAJOR; | 
|  | if (minor) *minor = TC_VERSION_MINOR; | 
|  | if (patch) *patch = TC_VERSION_PATCH; | 
|  | return TC_VERSION_STRING; | 
|  | } | 
|  |  | 
|  | // This function behaves similarly to MSVC's _set_new_mode. | 
|  | // If flag is 0 (default), calls to malloc will behave normally. | 
|  | // If flag is 1, calls to malloc will behave like calls to new, | 
|  | // and the std_new_handler will be invoked on failure. | 
|  | // Returns the previous mode. | 
|  | extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW { | 
|  | int old_mode = tc_new_mode; | 
|  | tc_new_mode = flag; | 
|  | return old_mode; | 
|  | } | 
|  |  | 
|  | #ifndef TCMALLOC_USING_DEBUGALLOCATION  // debugallocation.cc defines its own | 
|  |  | 
|  | // CAVEAT: The code structure below ensures that MallocHook methods are always | 
|  | //         called from the stack frame of the invoked allocation function. | 
|  | //         heap-checker.cc depends on this to start a stack trace from | 
|  | //         the call to the (de)allocation function. | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW { | 
|  | void* result = do_malloc_or_cpp_alloc(size); | 
|  | MallocHook::InvokeNewHook(result, size); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW { | 
|  | MallocHook::InvokeDeleteHook(ptr); | 
|  | do_free(ptr); | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n, | 
|  | size_t elem_size) __THROW { | 
|  | void* result = do_calloc(n, elem_size); | 
|  | MallocHook::InvokeNewHook(result, n * elem_size); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW { | 
|  | MallocHook::InvokeDeleteHook(ptr); | 
|  | do_free(ptr); | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr, | 
|  | size_t new_size) __THROW { | 
|  | if (old_ptr == NULL) { | 
|  | void* result = do_malloc_or_cpp_alloc(new_size); | 
|  | MallocHook::InvokeNewHook(result, new_size); | 
|  | return result; | 
|  | } | 
|  | if (new_size == 0) { | 
|  | MallocHook::InvokeDeleteHook(old_ptr); | 
|  | do_free(old_ptr); | 
|  | return NULL; | 
|  | } | 
|  | return do_realloc(old_ptr, new_size); | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) { | 
|  | void* p = cpp_alloc(size, false); | 
|  | // We keep this next instruction out of cpp_alloc for a reason: when | 
|  | // it's in, and new just calls cpp_alloc, the optimizer may fold the | 
|  | // new call into cpp_alloc, which messes up our whole section-based | 
|  | // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc | 
|  | // isn't the last thing this fn calls, and prevents the folding. | 
|  | MallocHook::InvokeNewHook(p, size); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW { | 
|  | void* p = cpp_alloc(size, true); | 
|  | MallocHook::InvokeNewHook(p, size); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW { | 
|  | MallocHook::InvokeDeleteHook(p); | 
|  | do_free(p); | 
|  | } | 
|  |  | 
|  | // Standard C++ library implementations define and use this | 
|  | // (via ::operator delete(ptr, nothrow)). | 
|  | // But it's really the same as normal delete, so we just do the same thing. | 
|  | extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW { | 
|  | MallocHook::InvokeDeleteHook(p); | 
|  | do_free(p); | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) { | 
|  | void* p = cpp_alloc(size, false); | 
|  | // We keep this next instruction out of cpp_alloc for a reason: when | 
|  | // it's in, and new just calls cpp_alloc, the optimizer may fold the | 
|  | // new call into cpp_alloc, which messes up our whole section-based | 
|  | // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc | 
|  | // isn't the last thing this fn calls, and prevents the folding. | 
|  | MallocHook::InvokeNewHook(p, size); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) | 
|  | __THROW { | 
|  | void* p = cpp_alloc(size, true); | 
|  | MallocHook::InvokeNewHook(p, size); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW { | 
|  | MallocHook::InvokeDeleteHook(p); | 
|  | do_free(p); | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW { | 
|  | MallocHook::InvokeDeleteHook(p); | 
|  | do_free(p); | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, | 
|  | size_t size) __THROW { | 
|  | void* result = do_memalign_or_cpp_memalign(align, size); | 
|  | MallocHook::InvokeNewHook(result, size); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign( | 
|  | void** result_ptr, size_t align, size_t size) __THROW { | 
|  | if (((align % sizeof(void*)) != 0) || | 
|  | ((align & (align - 1)) != 0) || | 
|  | (align == 0)) { | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | void* result = do_memalign_or_cpp_memalign(align, size); | 
|  | MallocHook::InvokeNewHook(result, size); | 
|  | if (result == NULL) { | 
|  | return ENOMEM; | 
|  | } else { | 
|  | *result_ptr = result; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t pagesize = 0; | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW { | 
|  | // Allocate page-aligned object of length >= size bytes | 
|  | if (pagesize == 0) pagesize = getpagesize(); | 
|  | void* result = do_memalign_or_cpp_memalign(pagesize, size); | 
|  | MallocHook::InvokeNewHook(result, size); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW { | 
|  | // Round up size to a multiple of pagesize | 
|  | if (pagesize == 0) pagesize = getpagesize(); | 
|  | if (size == 0) {     // pvalloc(0) should allocate one page, according to | 
|  | size = pagesize;   // http://man.free4web.biz/man3/libmpatrol.3.html | 
|  | } | 
|  | size = (size + pagesize - 1) & ~(pagesize - 1); | 
|  | void* result = do_memalign_or_cpp_memalign(pagesize, size); | 
|  | MallocHook::InvokeNewHook(result, size); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW { | 
|  | do_malloc_stats(); | 
|  | } | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW { | 
|  | return do_mallopt(cmd, value); | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_STRUCT_MALLINFO | 
|  | extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW { | 
|  | return do_mallinfo(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW { | 
|  | return MallocExtension::instance()->GetAllocatedSize(ptr); | 
|  | } | 
|  |  | 
|  | #if defined(OS_LINUX) | 
|  | extern "C" void* PERFTOOLS_DLL_DECL tc_malloc_skip_new_handler(size_t size) { | 
|  | void* result = do_malloc(size); | 
|  | MallocHook::InvokeNewHook(result, size); | 
|  | return result; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif  // TCMALLOC_USING_DEBUGALLOCATION | 
|  |  | 
|  | #if defined(OS_LINUX) | 
|  | // Alias the weak symbol in chromium to our implementation. | 
|  | extern "C" __attribute__((visibility("default"), alias("tc_malloc_skip_new_handler"))) | 
|  | void* tc_malloc_skip_new_handler_weak(size_t size); | 
|  | #endif | 
|  |  | 
|  | // --- Validation implementation with an extra mark ---------------------------- | 
|  | // We will put a mark at the extreme end of each allocation block.  We make | 
|  | // sure that we always allocate enough "extra memory" that we can fit in the | 
|  | // mark, and still provide the requested usable region.  If ever that mark is | 
|  | // not as expected, then we know that the user is corrupting memory beyond their | 
|  | // request size, or that they have called free a second time without having | 
|  | // the memory allocated (again).  This allows us to spot most double free()s, | 
|  | // but some can "slip by" or confuse our logic if the caller reallocates memory | 
|  | // (for a second use) before performing an evil double-free of a first | 
|  | // allocation | 
|  |  | 
|  | // This code can be optimized, but for now, it is written to be most easily | 
|  | // understood, and flexible (since it is evolving a bit). Potential | 
|  | // optimizations include using other calculated data, such as class size, or | 
|  | // allocation size, which is known in the code above, but then is recalculated | 
|  | // below.  Another potential optimization would be careful manual inlining of | 
|  | // code, but I *think* that the compile will probably do this for me, and I've | 
|  | // been careful to avoid aliasing issues that might make a compiler back-off. | 
|  |  | 
|  | // Evolution includes experimenting with different marks, to minimize the chance | 
|  | // that a mark would be misunderstood (missed corruption).  The marks are meant | 
|  | // to be hashed encoding of the location, so that they can't be copied over a | 
|  | // different region (by accident) without being detected (most of the time). | 
|  |  | 
|  | // Enable the following define to turn on all the TCMalloc checking. | 
|  | // It will cost about 2% in performance, but it will catch double frees (most of | 
|  | // the time), and will often catch allocated-buffer overrun errors.  This | 
|  | // validation is only active when TCMalloc is used as the allocator. | 
|  | #ifndef NDEBUG | 
|  | #define TCMALLOC_VALIDATION | 
|  | #endif | 
|  |  | 
|  | #if !defined(TCMALLOC_VALIDATION) | 
|  |  | 
|  | static size_t ExcludeSpaceForMark(size_t size) { return size; } | 
|  | static void AddRoomForMark(size_t* size) {} | 
|  | static void ExcludeMarkFromSize(size_t* new_size) {} | 
|  | static void MarkAllocatedRegion(void* ptr) {} | 
|  | static void ValidateAllocatedRegion(void* ptr, size_t cl) {} | 
|  |  | 
|  | #else  // TCMALLOC_VALIDATION | 
|  |  | 
|  | static void DieFromDoubleFree() { | 
|  | Log(kCrash, __FILE__, __LINE__, "Attempt to double free"); | 
|  | } | 
|  |  | 
|  | static void DieFromMemoryCorruption() { | 
|  | Log(kCrash, __FILE__, __LINE__, "Memory corrupted"); | 
|  | } | 
|  |  | 
|  | // We can either do byte marking, or whole word marking based on the following | 
|  | // define.  char is as small as we can get, and word marking probably provides | 
|  | // more than enough bits that we won't miss a corruption. Any sized integral | 
|  | // type can be used, but we just define two examples. | 
|  |  | 
|  | //  #define TCMALLOC_SMALL_VALIDATION | 
|  | #if defined (TCMALLOC_SMALL_VALIDATION) | 
|  |  | 
|  | typedef char MarkType;  // char saves memory... int is more complete. | 
|  | static const MarkType kAllocationMarkMask = static_cast<MarkType>(0x36); | 
|  |  | 
|  | #else | 
|  |  | 
|  | typedef int MarkType;  // char saves memory... int is more complete. | 
|  | static const MarkType kAllocationMarkMask = static_cast<MarkType>(0xE1AB9536); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | // TODO(jar): See if use of reference rather than pointer gets better inlining, | 
|  | // or if macro is needed.  My fear is that taking address map preclude register | 
|  | // allocation :-(. | 
|  | inline static void AddRoomForMark(size_t* size) { | 
|  | *size += sizeof(kAllocationMarkMask); | 
|  | } | 
|  |  | 
|  | inline static void ExcludeMarkFromSize(size_t* new_size) { | 
|  | *new_size -= sizeof(kAllocationMarkMask); | 
|  | } | 
|  |  | 
|  | inline static size_t ExcludeSpaceForMark(size_t size) { | 
|  | return size - sizeof(kAllocationMarkMask);  // Lie about size when asked. | 
|  | } | 
|  |  | 
|  | inline static MarkType* GetMarkLocation(void* ptr) { | 
|  | size_t size = GetSizeWithCallback(ptr, &InvalidGetAllocatedSize); | 
|  | ASSERT(size % sizeof(kAllocationMarkMask) == 0); | 
|  | size_t last_index = (size / sizeof(kAllocationMarkMask)) - 1; | 
|  | return static_cast<MarkType*>(ptr) + last_index; | 
|  | } | 
|  |  | 
|  | // We hash in the mark location plus the pointer so that we effectively mix in | 
|  | // the size of the block.  This means that if a span is used for different sizes | 
|  | // that the mark will be different. It would be good to hash in the size (which | 
|  | // we effectively get by using both mark location and pointer), but even better | 
|  | // would be to also include the class, as it concisely contains the entropy | 
|  | // found in the size (when we don't have large allocation), and there is less | 
|  | // risk of losing those bits to truncation. It would probably be good to combine | 
|  | // the high bits of size (capturing info about large blocks) with the class | 
|  | // (which is a 6 bit number). | 
|  | inline static MarkType GetMarkValue(void* ptr, MarkType* mark) { | 
|  | void* ptr2 = static_cast<void*>(mark); | 
|  | size_t offset1 = static_cast<char*>(ptr) - static_cast<char*>(NULL); | 
|  | size_t offset2 = static_cast<char*>(ptr2) - static_cast<char*>(NULL); | 
|  | static const int kInvariantBits = 2; | 
|  | ASSERT((offset1 >> kInvariantBits) << kInvariantBits == offset1); | 
|  | // Note: low bits of both offsets are invariants due to alignment.  High bits | 
|  | // of both offsets are the same (unless we have a large allocation).  Avoid | 
|  | // XORing high bits together, as they will cancel for most small allocations. | 
|  |  | 
|  | MarkType ret = kAllocationMarkMask; | 
|  | // Using a little shift, we can safely XOR together both offsets. | 
|  | ret ^= static_cast<MarkType>(offset1 >> kInvariantBits) ^ | 
|  | static_cast<MarkType>(offset2); | 
|  | if (sizeof(ret) == 1) { | 
|  | // Try to bring some high level bits into the mix. | 
|  | ret += static_cast<MarkType>(offset1 >> 8) ^ | 
|  | static_cast<MarkType>(offset1 >> 16) ^ | 
|  | static_cast<MarkType>(offset1 >> 24) ; | 
|  | } | 
|  | // Hash in high bits on a 64 bit architecture. | 
|  | if (sizeof(size_t) == 8 && sizeof(ret) == 4) | 
|  | ret += offset1 >> 16; | 
|  | if (ret == 0) | 
|  | ret = kAllocationMarkMask;  // Avoid common pattern of all zeros. | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // TODO(jar): Use the passed in TCmalloc Class Index to calculate mark location | 
|  | // faster.  The current implementation calls general functions, which have to | 
|  | // recalculate this in order to get the Class Size.  This is a slow and wasteful | 
|  | // recomputation... but it is much more readable this way (for now). | 
|  | static void ValidateAllocatedRegion(void* ptr, size_t cl) { | 
|  | if (ptr == NULL) return; | 
|  | MarkType* mark = GetMarkLocation(ptr); | 
|  | MarkType allocated_mark = GetMarkValue(ptr, mark); | 
|  | MarkType current_mark = *mark; | 
|  |  | 
|  | if (current_mark == ~allocated_mark) | 
|  | DieFromDoubleFree(); | 
|  | if (current_mark != allocated_mark) | 
|  | DieFromMemoryCorruption(); | 
|  | #ifndef NDEBUG | 
|  | // In debug mode, copy the mark into all the free'd region. | 
|  | size_t class_size = static_cast<size_t>(reinterpret_cast<char*>(mark) - | 
|  | reinterpret_cast<char*>(ptr)); | 
|  | memset(ptr, static_cast<char>(0x36), class_size); | 
|  | #endif | 
|  | *mark = ~allocated_mark;  //  Distinctively not allocated. | 
|  | } | 
|  |  | 
|  | static void MarkAllocatedRegion(void* ptr) { | 
|  | if (ptr == NULL) return; | 
|  | MarkType* mark = GetMarkLocation(ptr); | 
|  | *mark = GetMarkValue(ptr, mark); | 
|  | } | 
|  |  | 
|  | #endif  // TCMALLOC_VALIDATION |