blob: 987cfc42ee5cb3256e2ed051feae97b7dc404a4a [file] [log] [blame]
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/congestion_control/tcp_cubic_bytes_sender.h"
#include <algorithm>
#include "net/quic/congestion_control/prr_sender.h"
#include "net/quic/congestion_control/rtt_stats.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/proto/cached_network_parameters.pb.h"
using std::max;
using std::min;
namespace net {
namespace {
// Constants based on TCP defaults.
// The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a
// fast retransmission.
const QuicByteCount kDefaultMinimumCongestionWindow = 2 * kDefaultTCPMSS;
const QuicByteCount kMaxSegmentSize = kDefaultTCPMSS;
const QuicByteCount kMaxBurstBytes = 3 * kMaxSegmentSize;
const float kRenoBeta = 0.7f; // Reno backoff factor.
const uint32 kDefaultNumConnections = 2; // N-connection emulation.
} // namespace
TcpCubicBytesSender::TcpCubicBytesSender(
const QuicClock* clock,
const RttStats* rtt_stats,
bool reno,
QuicPacketCount initial_tcp_congestion_window,
QuicPacketCount max_congestion_window,
QuicConnectionStats* stats)
: hybrid_slow_start_(clock),
cubic_(clock),
rtt_stats_(rtt_stats),
stats_(stats),
reno_(reno),
num_connections_(kDefaultNumConnections),
num_acked_packets_(0),
largest_sent_sequence_number_(0),
largest_acked_sequence_number_(0),
largest_sent_at_last_cutback_(0),
congestion_window_(initial_tcp_congestion_window * kMaxSegmentSize),
min_congestion_window_(kDefaultMinimumCongestionWindow),
min4_mode_(false),
max_congestion_window_(max_congestion_window * kMaxSegmentSize),
slowstart_threshold_(max_congestion_window * kMaxSegmentSize),
last_cutback_exited_slowstart_(false),
clock_(clock) {
}
TcpCubicBytesSender::~TcpCubicBytesSender() {
}
void TcpCubicBytesSender::SetFromConfig(const QuicConfig& config,
Perspective perspective) {
if (perspective == Perspective::IS_SERVER) {
if (config.HasReceivedConnectionOptions() &&
ContainsQuicTag(config.ReceivedConnectionOptions(), kIW10)) {
// Initial window experiment.
congestion_window_ = 10 * kMaxSegmentSize;
}
if (config.HasReceivedConnectionOptions() &&
ContainsQuicTag(config.ReceivedConnectionOptions(), kMIN1)) {
// Min CWND experiment.
min_congestion_window_ = kMaxSegmentSize;
}
if (config.HasReceivedConnectionOptions() &&
ContainsQuicTag(config.ReceivedConnectionOptions(), kMIN4)) {
// Min CWND of 4 experiment.
min4_mode_ = true;
min_congestion_window_ = kMaxSegmentSize;
}
}
}
bool TcpCubicBytesSender::ResumeConnectionState(
const CachedNetworkParameters& cached_network_params,
bool max_bandwidth_resumption) {
// If the previous bandwidth estimate is less than an hour old, store in
// preparation for doing bandwidth resumption.
int64 seconds_since_estimate =
clock_->WallNow().ToUNIXSeconds() - cached_network_params.timestamp();
if (seconds_since_estimate > kNumSecondsPerHour) {
return false;
}
QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond(
max_bandwidth_resumption
? cached_network_params.max_bandwidth_estimate_bytes_per_second()
: cached_network_params.bandwidth_estimate_bytes_per_second());
QuicTime::Delta rtt_ms =
QuicTime::Delta::FromMilliseconds(cached_network_params.min_rtt_ms());
// Make sure CWND is in appropriate range (in case of bad data).
QuicByteCount new_congestion_window = bandwidth.ToBytesPerPeriod(rtt_ms);
congestion_window_ =
max(min(new_congestion_window, kMaxTcpCongestionWindow * kMaxSegmentSize),
kMinCongestionWindowForBandwidthResumption * kMaxSegmentSize);
// TODO(rjshade): Set appropriate CWND when previous connection was in slow
// start at time of estimate.
return true;
}
void TcpCubicBytesSender::SetNumEmulatedConnections(int num_connections) {
num_connections_ = max(1, num_connections);
cubic_.SetNumConnections(num_connections_);
}
void TcpCubicBytesSender::SetMaxCongestionWindow(
QuicByteCount max_congestion_window) {
max_congestion_window_ = max_congestion_window;
}
float TcpCubicBytesSender::RenoBeta() const {
// kNConnectionBeta is the backoff factor after loss for our N-connection
// emulation, which emulates the effective backoff of an ensemble of N
// TCP-Reno connections on a single loss event. The effective multiplier is
// computed as:
return (num_connections_ - 1 + kRenoBeta) / num_connections_;
}
void TcpCubicBytesSender::OnCongestionEvent(
bool rtt_updated,
QuicByteCount bytes_in_flight,
const CongestionVector& acked_packets,
const CongestionVector& lost_packets) {
if (rtt_updated && InSlowStart() &&
hybrid_slow_start_.ShouldExitSlowStart(
rtt_stats_->latest_rtt(), rtt_stats_->min_rtt(),
congestion_window_ / kMaxSegmentSize)) {
slowstart_threshold_ = congestion_window_;
}
for (CongestionVector::const_iterator it = lost_packets.begin();
it != lost_packets.end(); ++it) {
OnPacketLost(it->first, bytes_in_flight);
}
for (CongestionVector::const_iterator it = acked_packets.begin();
it != acked_packets.end(); ++it) {
OnPacketAcked(it->first, it->second.bytes_sent, bytes_in_flight);
}
}
void TcpCubicBytesSender::OnPacketAcked(
QuicPacketSequenceNumber acked_sequence_number,
QuicByteCount acked_bytes,
QuicByteCount bytes_in_flight) {
largest_acked_sequence_number_ =
max(acked_sequence_number, largest_acked_sequence_number_);
if (InRecovery()) {
// PRR is used when in recovery.
prr_.OnPacketAcked(acked_bytes);
return;
}
MaybeIncreaseCwnd(acked_sequence_number, acked_bytes, bytes_in_flight);
// TODO(ianswett): Should this even be called when not in slow start?
hybrid_slow_start_.OnPacketAcked(acked_sequence_number, InSlowStart());
}
void TcpCubicBytesSender::OnPacketLost(QuicPacketSequenceNumber sequence_number,
QuicByteCount bytes_in_flight) {
// TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
// already sent should be treated as a single loss event, since it's expected.
if (sequence_number <= largest_sent_at_last_cutback_) {
if (last_cutback_exited_slowstart_) {
++stats_->slowstart_packets_lost;
}
DVLOG(1) << "Ignoring loss for largest_missing:" << sequence_number
<< " because it was sent prior to the last CWND cutback.";
return;
}
++stats_->tcp_loss_events;
last_cutback_exited_slowstart_ = InSlowStart();
if (InSlowStart()) {
++stats_->slowstart_packets_lost;
}
prr_.OnPacketLost(bytes_in_flight);
if (reno_) {
congestion_window_ = congestion_window_ * RenoBeta();
} else {
congestion_window_ =
cubic_.CongestionWindowAfterPacketLoss(congestion_window_);
}
slowstart_threshold_ = congestion_window_;
// Enforce TCP's minimum congestion window of 2*MSS.
if (congestion_window_ < min_congestion_window_) {
congestion_window_ = min_congestion_window_;
}
largest_sent_at_last_cutback_ = largest_sent_sequence_number_;
// Reset packet count from congestion avoidance mode. We start counting again
// when we're out of recovery.
num_acked_packets_ = 0;
DVLOG(1) << "Incoming loss; congestion window: " << congestion_window_
<< " slowstart threshold: " << slowstart_threshold_;
}
bool TcpCubicBytesSender::OnPacketSent(
QuicTime /*sent_time*/,
QuicByteCount /*bytes_in_flight*/,
QuicPacketSequenceNumber sequence_number,
QuicByteCount bytes,
HasRetransmittableData is_retransmittable) {
if (InSlowStart()) {
++(stats_->slowstart_packets_sent);
}
// Only update bytes_in_flight_ for data packets.
if (is_retransmittable != HAS_RETRANSMITTABLE_DATA) {
return false;
}
if (InRecovery()) {
// PRR is used when in recovery.
prr_.OnPacketSent(bytes);
}
DCHECK_LT(largest_sent_sequence_number_, sequence_number);
largest_sent_sequence_number_ = sequence_number;
hybrid_slow_start_.OnPacketSent(sequence_number);
return true;
}
QuicTime::Delta TcpCubicBytesSender::TimeUntilSend(
QuicTime /* now */,
QuicByteCount bytes_in_flight,
HasRetransmittableData has_retransmittable_data) const {
if (has_retransmittable_data == NO_RETRANSMITTABLE_DATA) {
// For TCP we can always send an ACK immediately.
return QuicTime::Delta::Zero();
}
if (InRecovery()) {
// PRR is used when in recovery.
return prr_.TimeUntilSend(GetCongestionWindow(), bytes_in_flight,
slowstart_threshold_);
}
if (GetCongestionWindow() > bytes_in_flight) {
return QuicTime::Delta::Zero();
}
if (min4_mode_ && bytes_in_flight < 4 * kMaxSegmentSize) {
return QuicTime::Delta::Zero();
}
return QuicTime::Delta::Infinite();
}
QuicBandwidth TcpCubicBytesSender::PacingRate() const {
// We pace at twice the rate of the underlying sender's bandwidth estimate
// during slow start and 1.25x during congestion avoidance to ensure pacing
// doesn't prevent us from filling the window.
QuicTime::Delta srtt = rtt_stats_->smoothed_rtt();
if (srtt.IsZero()) {
srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_->initial_rtt_us());
}
const QuicBandwidth bandwidth =
QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt);
return bandwidth.Scale(InSlowStart() ? 2 : 1.25);
}
QuicBandwidth TcpCubicBytesSender::BandwidthEstimate() const {
QuicTime::Delta srtt = rtt_stats_->smoothed_rtt();
if (srtt.IsZero()) {
// If we haven't measured an rtt, the bandwidth estimate is unknown.
return QuicBandwidth::Zero();
}
return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt);
}
bool TcpCubicBytesSender::HasReliableBandwidthEstimate() const {
return !InSlowStart() && !InRecovery() &&
!rtt_stats_->smoothed_rtt().IsZero();
}
QuicTime::Delta TcpCubicBytesSender::RetransmissionDelay() const {
if (rtt_stats_->smoothed_rtt().IsZero()) {
return QuicTime::Delta::Zero();
}
return rtt_stats_->smoothed_rtt().Add(
rtt_stats_->mean_deviation().Multiply(4));
}
QuicByteCount TcpCubicBytesSender::GetCongestionWindow() const {
return congestion_window_;
}
bool TcpCubicBytesSender::InSlowStart() const {
return congestion_window_ < slowstart_threshold_;
}
QuicByteCount TcpCubicBytesSender::GetSlowStartThreshold() const {
return slowstart_threshold_;
}
bool TcpCubicBytesSender::IsCwndLimited(QuicByteCount bytes_in_flight) const {
if (bytes_in_flight >= congestion_window_) {
return true;
}
const QuicByteCount available_bytes = congestion_window_ - bytes_in_flight;
const bool slow_start_limited =
InSlowStart() && bytes_in_flight > congestion_window_ / 2;
return slow_start_limited || available_bytes <= kMaxBurstBytes;
}
bool TcpCubicBytesSender::InRecovery() const {
return largest_acked_sequence_number_ <= largest_sent_at_last_cutback_ &&
largest_acked_sequence_number_ != 0;
}
// Called when we receive an ack. Normal TCP tracks how many packets one ack
// represents, but quic has a separate ack for each packet.
void TcpCubicBytesSender::MaybeIncreaseCwnd(
QuicPacketSequenceNumber acked_sequence_number,
QuicByteCount acked_bytes,
QuicByteCount bytes_in_flight) {
LOG_IF(DFATAL, InRecovery()) << "Never increase the CWND during recovery.";
if (!IsCwndLimited(bytes_in_flight)) {
// We don't update the congestion window unless we are close to using the
// window we have available.
return;
}
if (congestion_window_ >= max_congestion_window_) {
return;
}
if (InSlowStart()) {
// TCP slow start, exponential growth, increase by one for each ACK.
congestion_window_ += kMaxSegmentSize;
DVLOG(1) << "Slow start; congestion window: " << congestion_window_
<< " slowstart threshold: " << slowstart_threshold_;
return;
}
// Congestion avoidance.
if (reno_) {
// Classic Reno congestion avoidance.
++num_acked_packets_;
// Divide by num_connections to smoothly increase the CWND at a faster rate
// than conventional Reno.
if (num_acked_packets_ * num_connections_ >=
congestion_window_ / kMaxSegmentSize) {
congestion_window_ += kMaxSegmentSize;
num_acked_packets_ = 0;
}
DVLOG(1) << "Reno; congestion window: " << congestion_window_
<< " slowstart threshold: " << slowstart_threshold_
<< " congestion window count: " << num_acked_packets_;
} else {
congestion_window_ =
min(max_congestion_window_,
cubic_.CongestionWindowAfterAck(acked_bytes, congestion_window_,
rtt_stats_->min_rtt()));
DVLOG(1) << "Cubic; congestion window: " << congestion_window_
<< " slowstart threshold: " << slowstart_threshold_;
}
}
void TcpCubicBytesSender::OnRetransmissionTimeout(bool packets_retransmitted) {
largest_sent_at_last_cutback_ = 0;
if (!packets_retransmitted) {
return;
}
cubic_.Reset();
hybrid_slow_start_.Restart();
slowstart_threshold_ = congestion_window_ / 2;
congestion_window_ = min_congestion_window_;
}
CongestionControlType TcpCubicBytesSender::GetCongestionControlType() const {
return reno_ ? kRenoBytes : kCubicBytes;
}
} // namespace net